• Title/Summary/Keyword: Hybrid electronic vehicle

Search Result 74, Processing Time 0.028 seconds

Development of High efficient BLDC Motor for Electric Air Conditioner of Mild Hybrid Vehicle (Mild Hybrid차량의 전동에어컨용 고효율 BLDC Motor개발)

  • Hur Jin;Jung In-Soung;Ryu Se-Hyun;Kim Joo-Han;Sung Ha-Gyeong;Kang Gyu-Hong
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.923-925
    • /
    • 2004
  • A lot of conventional automotive components driven by mechanical power source are being replaced with electrical ones to comply with the demands of market and customer, therefore the amount of electric energy used in a vehicle will be increased continuously. The increment of electric power demand causes interest on new higher power system such as 42V Power Net, and furthermore necessity for development of energy storage device is highlighted recently. This paper present the design of the BLDC motor for electric air-conditioner in 42V system and compare with the characteristics of several type BLDC motor.

  • PDF

Hybrid Approach-Based Sparse Gaussian Kernel Model for Vehicle State Determination during Outage-Free and Complete-Outage GPS Periods

  • Havyarimana, Vincent;Xiao, Zhu;Wang, Dong
    • ETRI Journal
    • /
    • v.38 no.3
    • /
    • pp.579-588
    • /
    • 2016
  • To improve the ability to determine a vehicle's movement information even in a challenging environment, a hybrid approach called non-Gaussian square rootunscented particle filtering (nGSR-UPF) is presented. This approach combines a square root-unscented Kalman filter (SR-UKF) and a particle filter (PF) to determinate the vehicle state where measurement noises are taken as a finite Gaussian kernel mixture and are approximated using a sparse Gaussian kernel density estimation method. During an outage-free GPS period, the updated mean and covariance, computed using SR-UKF, are estimated based on a GPS observation update. During a complete GPS outage, nGSR-UPF operates in prediction mode. Indeed, because the inertial sensors used suffer from a large drift in this case, SR-UKF-based importance density is then responsible for shifting the weighted particles toward the high-likelihood regions to improve the accuracy of the vehicle state. The proposed method is compared with some existing estimation methods and the experiment results prove that nGSR-UPF is the most accurate during both outage-free and complete-outage GPS periods.

Design Procedures of LLC Resonant Converter for Electric Vehicle On-Board Charger (전기자동차 OBC용 LLC 공진형 컨버터의 설계절차)

  • Jung, Yong-Chae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.1
    • /
    • pp.91-96
    • /
    • 2014
  • nowadays, many researches for plug-in hybrid electric vehicles have been actively carried out to improve the gas mileage in comparison with mass-produced hybrid electric vehicles. In this paper, the on-board charger for plug-in hybrid electric vehicles is studied for obtaining the high efficiency. The on-board charger consists of two phase interleaved PFC circuit and LLC resonant converter. The new design procedures of LLC resonant converter are proposed in this paper. These are very simple and powerful method. In order to verify the abovementioned contents, the LLC resonant converter is designed and tested by using PSIM tool.

A Study on Educational Contents of Hybrid Electric Vehicle Using Real Time Monitoring System (실시간 모니터링 시스템을 이용한 하이브리드 자동차 교육용 콘텐츠에 관한 연구)

  • Baek, Soo-Whang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.2
    • /
    • pp.443-448
    • /
    • 2018
  • Recently, Hybrid Electric Vehicle(: HEV) is in the spotlight to global warming caused by carbon dioxide and emission reduction. HEV consists of a combination of mechanical engine and electric motor system. The flow of energy required to drive a HEV depends on the driving conditions of the vehicle. In this paper, we study the contents of HEV education using real-time monitoring system. A real-time monitoring system consisting of hardware and virtual programs is used to simulate the overall operation of a HEV through simulations according to driving conditions and to explain how to learn through hardware.

Levitation and Thrust Forces Analysis of Hybrid-Excited Linear Synchronous Motor for Magnetically Levitated Vehicle

  • Cho, Han-Wook;Kim, Chang-Hyun;Han, Hyung-Suk;Lee, Jong-Min
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.564-569
    • /
    • 2012
  • This paper proposes a hybrid-excited linear synchronous motor (LSM) that has potential applications in a magnetically levitated vehicle. The levitation and thrust force characteristics of the LSM are investigated by means of three-dimensional (3-D) numerical electromagnetic FEM calculations and experimental verification. Compared to a conventional LSM with electromagnets, a hybrid-excited LSM can improve levitation force/weight ratios, and reduce the power consumption of the vehicle. Because the two-dimensional (2-D) FE analysis model describes only the center section of the physical device, it cannot express the complex behavior of leakage flux, which this study is able to predicts along with levitation and thrust force characteristics by 3-D FEM calculations. A static force tester for a hybrid-excited LSM has been manufactured and tested in order to verify these predictions. The experimental results confirm the validity of the 3-D FEM calculation scheme for the description of a hybrid-excited LSM.

Research on Application of Functional Safety for Developing Combat Hybrid Electric Vehicles (하이브리드 전투차량의 기능안전성 적용 연구)

  • Chang, Kyogun;Lee, Yoon Bok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.543-549
    • /
    • 2012
  • Hybrid electric propulsion systems are expected as future primary combat platforms because the systems can supply enough electric power, easily locate components inside vehicles, and maneuver without undesired noise. However, increasing electric/electronic/software usage causes abnormal failure patterns which have not been noticeable in conventional automotive. Recently, the functional safety standard for road vehicles were enacted and vehicle manufacturers request their components which satisfy standardized quality. This research analyzes functional safety standards(IEC 61508 and ISO 26262) and compares the standards for road vehicles with military standards of system safety. Strategies to apply functional safety in the combat hybrid electric vehicle are scrutinized.

A Study on Narrowband Electromagnetic Interference in The Cabin of Vehicle (자동차 실내 전자파의 협대역 특성에 관한 연구)

  • Kim, Minwoo;Woo, Hyungu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.8 no.2
    • /
    • pp.30-36
    • /
    • 2016
  • According to revolutionary developments in automobile technologies, various electronically controlled components of vehicles are rapidly increasing. A variety of advanced vehicles (hybrid vehicle, hydrogen fuel-cell vehicle, electric vehicle, etc.) using electrical energy source are increasing, too. The electromagnetic compatibility is getting more important for development of a vehicle because those advanced vehicles are equipped with more new electronic systems. In general, electromagnetic compatibility tests consist of an electromagnetic interference (EMI) test and an electromagnetic susceptibility (EMS) test. In this paper, in order to investigate the electromagnetic interference in the cabin of vehicle by various electric and electronic components of vehicles, a series of narrowband electromagnetic emission tests are conducted. For comparison, the several digital home appliances (smartphone under charging, laptop compuer and digital camera), which are used a lot in daily lives, are tested.

Charging Control of Wireless Charging System (무선충전시스템의 충전 제어 방식)

  • Shin, Han-Ho;Heo, Joon;Jeon, Seong-Jeub
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.4
    • /
    • pp.303-309
    • /
    • 2019
  • A hybrid control of a rectifier/regulator of wireless power transfer systems for electric vehicles is studied. A combined rectifier/regulator is used for charging control. The hybrid control comprises integral cycle control and pulse width modulation control to cope with the variations in the induced voltage due to clearance and alignment. The hybrid control has good control capability and does not cause severe switching loss. A 22 kW prototype of the Wireless Power Transfer class 4 charging system defined by the Society of Automotive Engineers is constructed and tested to verify the proposal.

Electric Model of Li-Ion Polymer Battery for Motor Driving Circuit in Hybrid Electric Vehicle

  • Lee, June-Sang;Lee, Jae-Joong;Kim, Mi-Ro;Park, In-Jun;Kim, Jung-Gu;Lee, Ki-Sik;Nah, Wan-Soo
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.932-939
    • /
    • 2012
  • This paper presents an equivalent circuit model of a LIPB (Li-Ion Polymer battery) for Hybrid Electric Vehicles (HEVs). The proposed equivalent circuit can be used to predict the charging/discharging characteristics in time domain as well as the impedance characteristic analysis in frequency domain. Based on these features, a one-cell model is established as a function of Depth of Discharge (DoD), and a 48-cell model for a battery pack was also established. It was confirmed by experiment that the proposed model predict the discharging and impedance (AC) characteristics quite accurately at different constant current levels. To check the usefulness of the proposed circuit, the model was used to simulate a motor driving circuit with an Insulated Gate Bipolar Transistor (IGBT) inverter and Brushless DC (BLDC) motor, and it is confirmed that the model can calculate the battery voltage fluctuation in time domain at different DoDs.

Design and Control Strategy of Fuel Cell Hybrid Power System for Light Electric Railway Vehicles (경전철용 연료전지 하이브리드 동력시스템 설계 및 제어)

  • Kim, Young-Ryul;Park, Young-Won
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.5
    • /
    • pp.772-777
    • /
    • 2009
  • The development of fuel cell hybrid power system, as a next generation power system to promote clean energy which will mitigate the continued global warming, has demonstratd a significant progress in passenger vehicle applications. Also, in case of railway vehicles in non-electrified railway lines, the adoption of fuel cell hybrid power system is being studied among well-known manufacturers. This paper introduces both the configuration and the control strategy of fuel cell hybrid power system to apply to a light electronic railway vehicle having a repeated driving pattern of acceleration, coasting and deceleration. The simulation results demonstrate the viability of the proposed power system design and its control strategy.