• Title/Summary/Keyword: Hybrid electrolyte

Search Result 106, Processing Time 0.026 seconds

Design of Non-Flammable Electrolytes for Highly Safe Lithium-Ion Battery (리튬 이온전지의 안전성을 구현하기 위한 난연성 전해액의 설계)

  • Choi, Nam-Soon;Kim, Sung-Soo;Narukawa, Satoshi;Shin, Soon-Cheol;Cha, Eun-Hee
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.3
    • /
    • pp.203-218
    • /
    • 2009
  • The development of lithium-ion battery (LIB) technologies and their application in the field of large-scale power sources, such as electric vehicles (EVs), hybrid EVs, and plug-in EVs require enhanced reliability and superior safety. The main components of LIBs should withstand to the inevitable heating of batteries during high current flow. Carbonate solvents that contribute to the dissociation of lithium salts are volatile and potentially combustible and can lead to the thermal runaway of batteries at any abuse conditions. Recently, an interest in nonflammable materials is greatly growing as a means for improving battery safety. In this review paper, novel approaches are described for designing highly safe electrolytes in detail. Non-flammability of liquid electrolytes and battery safety can be achieved by replacing flammable organic solvents with thermally resistive materials such as flame-retardants, fluorinated organic solvents, and ionic liquids.

Electrochemical Characteristics of Ru Added Li4Ti5O12 as an Anode Material (Ru를 첨가한 음극활물질 Li4Ti5O12의 전기화학적 특성)

  • Cho, Woo-Ram;Na, Byung-Ki
    • Clean Technology
    • /
    • v.20 no.4
    • /
    • pp.433-438
    • /
    • 2014
  • There is an increasing interest in the development of rechargeable batteries suitable for use in both hybrid electric vehicles and energy storage systems that require higher charge & discharge rates, bigger battery sizes and increased safety of the batteries. Spinel-type lithium titanium oxide ($Li_4Ti_5O_{12}$) as a potential anode for lithium ion batteries has many advantages. It is a zero-strain materials and it experiences no structural change during the charge/discharge precess. Thus, it has long cycle life due to its structural integrity. It also offers a stable operation voltage of approximately 1.55 V versus $Li^+/Li$, above the reduction potential of most organic electrolyte. In this study, Ru added $Li_4Ti_5O_{12}$ composites were synthesized by solid state process. The characteristics of active material were investigated with TGA-DTA, XRD, SEM and charge/discharge test. The capacity was reduced when Ru was added, however, the polarization decreased. The capacity rate of $Li_4Ti_5O_{12}$ with Ru (3%, 4%) addition was reduced during the charge/discharge precess with 10 C-rate as a high current density.

A Study on Numerical Analysis for Internal PEMFC Cooling of Power Pack for UPS (UPS 파워 팩 내부 연료전지의 냉각특성에 대한 수치 해석)

  • Song, Jun-Seok;Kim, Byeong-Heon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.527-535
    • /
    • 2017
  • Heat management is one of the most critical issues in Polymer Electrolyte Membrane Fuel Cells (PEMFCs) installed inside the fuel cell power pack of a fuel cell battery hybrid UPS. If the heat generated by the chemical reaction in the fuel cell is not rapidly removed, the durability and performance of the fuel cell may be affected, which may shorten its lifetime. Therefore, the objective of this study is to select and propose a proper cooling method for the fuel cells used in the fuel cell power pack of a UPS. In order to find the most appropriate cooling method, the various design factors affecting the cooling performance were studied. The numerical analysis was performed by a commercial program, i.e., COMSOL Multiphysics. Firstly, the surface temperature of the 1 kW class fuel cell stack with the cooling fans placed at the top was compared with the one with the cooling fans placed at the bottom. Various rotation speeds of the cooling fan, viz. 2,500, 3,000, 3,500, and 4,000 RPM, were tested to determine the proper cooling fan speed. In addition, the influence of the inhaled air flow rate was investigated by changing the porous area of the grille, which is the entrance of the air flowing from the outside to the inside of the power pack. As a result, it was found that for the operating conditions of the 1 kW class PEMFC to be acceptable, the cooling fan was required to have a minimum rotating speed of 3500 RPM to maintain the fuel cell surface temperature within an acceptable range. The results of this study can be effectively applied to the development of thermal management technology for the fuel cells inside the fuel cell power pack of a UPS.

Enhanced Cycle Performance of Bi-layer Structured LMO-NCM Positive Electrode at Elevated Temperature (겹층구조의 LMO-NCM 복합양극을 통한 고온 사이클 수명개선 연구)

  • Yoo, Seong Tae;Ryu, Ji Heon
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.4
    • /
    • pp.184-190
    • /
    • 2022
  • Spinel LiMn2O4 (LMO) and layered LiNi0.5Co0.2Mn0.3O2 (NCM) are widely used as positive electrode materials for lithium-ion batteries. LMO and NCM positive electrode materials have a complementary properties. LMO has low cost and high safety and NCM materials show a relatively high specific capacity and better cycle life even at elevated temperature. Therefore, the LMO and NCM active materials are blended and used as a positive electrode in large-size batteries for electric vehicles (xEV). In this study, the cycle performance of a blended electrode prepared by simply mixing LMO and NCM and a bi-layer electrode in which two electrode layers aree sequentially coated are compared. The bi-layer electrode prepared by composing the same ratio of both active materials has similar capacity and cycle performance to the blend electrode. However, the LN electrode coated with LMO first and then NCM is the best in the full cell cycle performance at elevated temperature, and the NL electrode, in which NCM is first coated with LMO has a faster capacity degradation than the blended electrode because LMO is mainly located on the top of the electrode adjacent to electrolyte and graphite negative electrode. Also, the LSTA (linear sweep thermmametry) analysis results show that the LN bi-layer electrode in which the LMO is located inside the electrode has good thermal stability.

Fabrication and Characterization of Lactate Oxidase-catalase-mitochondria Electrode (젖산 산화효소-카탈라아제-미토콘드리아 전극 제작 및 특성 분석)

  • Ke Shi;Keerthi Booshan Manikandan;Young-Bong Choi;Chang-Joon Kim
    • Korean Chemical Engineering Research
    • /
    • v.62 no.3
    • /
    • pp.238-245
    • /
    • 2024
  • The lactate electrode can be utilized either as an electrode for lactate sensor to monitor the patient's health status, stress level, and athlete's fatigue in real time or lactate fuel cell. In this study, we fabricated a high-performance electrode composed of lactate oxidase, catalase, and mitochondria, and investigated the surface analysis and electrochemical properties of this electrode. Carbon paper modified with single-walled carbon nanotubes (CP-SWCNT) had significantly improved electrical conductivity compared to before modification. The electrode to which lactate oxidase, catalase, and mitochondria were attached (CP-SWCNT-LOx-Cat-Mito) produced a higher current than the electrode to which lactate oxidase and catalase were attached. The amount of reduction current produced by the bilirubin oxidase (BOD)-attached electrode (CP-SWCNT-BOD) was greatly affected by the presence or absence of oxygen in the electrolyte. The fuel cell composed of CP-SWCNT-LOx-Cat-Mito (anode) and CP-SWCNT-BOD (cathode) produced maximum power (29 ㎼/cm2) at a discharge current density of 133 ㎂/cm2. From this study, we had proved that mitochondria is essential for improving lactate sensor and fuel cell performance.

Changes in Seed Vigour of Sweet and Super Sweet Corn Hybrids as Affected by Storage Conditions (단옥수수와 초당옥수수의 저장조건에 따른 종자 활력변화)

  • Lee Suk-Soon;Yun Sang-Hee;Yang Seung-Kyu;Hong Seung-Beom
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.5
    • /
    • pp.432-439
    • /
    • 2006
  • An experiment was conducted to characterize the seed vigour of sweet (su) and super sweet (sh2) corn seeds stored at different temperatures and relative humidities (RH). Hybrid seeds of Early Sunglow ${\times}$ Golden Cross Bantam 70 (su) and Xtrasweet 82 ${\times}$ Fortune (sh2) were stored at different temperatures ($5\;and\;15^{\circ}C$) and RH(70 and 85%) for 10 months. Results of the experiment show that seed deterioration of super sweet corn was much faster than that of sweet corn under all storage conditions. Germination rate of sweet corn seeds at $25^{\circ}C$ and emergence rate in cold test showed similar patterns. Emergence rate of super sweet corn in cold test was significantly lower than the germination rate at $25^{\circ}C$. Germination rate of both sweet and super sweet corns was positively correlated to the emergence rate in cold test, but the correlation coefficient of super sweet corn was much lower compared to the sweet corn. This implies that the viability of super sweet corn seeds should be tested in the cold test to estimate field emergence rate. Seeds of sweet corn could be stored for 5 months under all storage conditions without significant seed deterioration, while those of super sweet corn should be stored at low temperature and RH. The emergence rate of sweet corn in cold test was not correlated to the leakage of total sugars, electrolytes or ${\alpha}-amylase$ activity, while that of super sweet com was positively correlated to the ${\alpha}-amylase$ activity, negatively correlated to the leakage of electrolytes, and was not correlated to the leakage of total sugars.