• 제목/요약/키워드: Hybrid composite plate

검색결과 98건 처리시간 0.025초

비구속 삽입된 직물 섬유를 이용한 샌드위치 쉴드의 초고속 충격 해석 (Computational analysis of sandwich shield with free boundary inserted fabric at hypervelocity impact)

  • 문진범;박유림;손길상;김천곤
    • Composites Research
    • /
    • 제24권3호
    • /
    • pp.31-38
    • /
    • 2011
  • 본 연구에서는 우주 파편들과의 초고속 충돌로부터 우주 구조물을 보호하기 위한 새로운 하이브리드 복합재료 쉴드가 제안되었다. 제안된 쉴드의 유한요소 모델을 구성하고, 에너지 흡수율을 예측하기 위해서 유한 요소 해석을 수행하였다. 최종모델의 해석에 앞서 각 구성 요소인 알루미늄 판, PMMA 판 그리고 중간층인 직물 섬유의 해석이 먼저 수행되었으며, 각 요소의 유한요소 모델의 타당성이 검증되었다. 해석에 사용된 재료 물성은 고 변형률 속도에서의 재료 물성들을 예측하여 사용하였으며, 해석 결과 개별 요소의 에너지 흡수율이 직물섬유를 제외하고는 잘 맞음을 확인하였다. 이후 하이브리드 복합재료 쉴드의 유한 요소 모델을 구성하였고, 직물섬유의 구속 조건을 고정과 비 구속의 두 가지로 나누어 해석을 수행하여 비교하였다. 이를 통해서 비구속 삽입된 섬유를 이용한 하이브리드 쉴드가 섬유 풀아웃 현상이 잘 구현되었고, 이로 인해 에너지 흡수율이 향상 될 수 있음을 최종 확인하였다.

Optimal design of a lightweight composite sandwich plate used for airplane containers

  • Al-Fatlawi, Alaa;Jarmai, Karoly;Kovacs, Gyorgy
    • Structural Engineering and Mechanics
    • /
    • 제78권5호
    • /
    • pp.611-622
    • /
    • 2021
  • Composite material-due to low density-causes weight savings, which results in lower fuel consumption of transport vehicles. The aim of the research was to change the existing base-plate of the aluminum airplane container with the composite sandwich plate in order to reduce the weight of the containers of cargo aircrafts. The newly constructed sandwich plate consists of aluminum honeycomb core and composite face-sheets. The face-sheets consist of glass or carbon or hybrid fiber layers. The orientations of the fibers in the face-sheets were 0°, 90° and ±45°. Multi-objective optimization method was elaborated for the newly constructed sandwich plates. Based on the design aim, the importance of the objective functions (weight and cost of sandwich plates) was the same (50%). During the optimization nine design constraints were considered: stiffness, deflection, facing stress, core shear stress, skin stress, plate buckling, shear crimping, skin wrinkling, intracell buckling. The design variables were core thickness and number of layers of the face-sheets. During the optimization both the Weighted Normalized Method of the Excel Solver and the Genetic Algorithm Solver of Matlab software were applied. The mechanical properties of composite face-sheets were calculated by Laminator software according to the Classical Lamination Plate Theory and Tsai-Hill failure criteria. The main added-value of the study is that the multi-objective optimization method was elaborated for the newly constructed sandwich structures. It was confirmed that the optimal new composite sandwich construction-due to weight savings and lower fuel consumption of cargo aircrafts - is more advantageous than conventional all-aluminum container.

Bolted end plate connections for steel reinforced concrete composite structures

  • Li, Xian;Wu, Yuntian;Mao, Weifeng;Xiao, Yan;Anderson, J.C.;Guo, Yurong
    • Structural Engineering and Mechanics
    • /
    • 제24권3호
    • /
    • pp.291-306
    • /
    • 2006
  • In order to improve the constructability and meanwhile ensure excellent seismic behavior, several innovative composite connection details were conceived and studied by the authors. This paper reports experimental results and observations on seismic behavior of steel beam bolted to reinforced concrete column connections (bolted RCS or BRCS). The proposed composite connection details involve post tensioning the end plates of the steel beams to the reinforced concrete or precast concrete columns using high-strength steel rods. A rational design procedure was proposed to assure a ductile behavior of the composite structure. Strut-and-tie model analysis indicates that a bolted composite connection has a favorable stress transfer mechanism. The excellent capacity and behavior were then validated through five full-scale beam to column connection model tests.

Elastic analysis of interfacial stress concentrations in CFRP-RC hybrid beams: Effect of creep and shrinkage

  • Abderezak, Rabahi;Daouadji, Tahar Hassaine;Abbes, Boussad;Rabia, Benferhat;Belkacem, Adim;Abbes, Fazilay
    • Advances in materials Research
    • /
    • 제6권3호
    • /
    • pp.257-278
    • /
    • 2017
  • A simple closed-form solution to calculate the interfacial shear and normal stresses of retrofitted concrete beam strengthened with thin composite plate under mechanical loads including the creep and shrinkage effect has been presented in this paper. In such plated beams, tensile forces develop in the bonded plate, and these have to be transferred to the original beam via interfacial shear and normal stresses. Consequently, debonding failure may occur at the plate ends due to a combination of high shear and normal interfacial stresses. These stresses between a beam and a soffit plate, within the linear elastic range, have been addressed by numerous analytical investigations. Surprisingly, none of these investigations has examined interfacial stresses while taking the creep and shrinkage effect into account. In the present theoretical analysis for the interfacial stresses between reinforced concrete beam and a thin composite plate bonded to its soffit, the influence of creep and shrinkage effect relative to the time of the casting, and the time of the loading of the beams is taken into account. Numerical results from the present analysis are presented both to demonstrate the advantages of the present solution over existing ones and to illustrate the main characteristics of interfacial stress distributions.

Flexural performance of wooden beams strengthened by composite plate

  • Tahar, Hassaine Daouadji;Abderezak, Rabahi;Rabia, Benferhat
    • Structural Monitoring and Maintenance
    • /
    • 제7권3호
    • /
    • pp.233-259
    • /
    • 2020
  • Using bonded fiber-reinforced polymer laminates for strengthening wooden structural members has been shown to be an effective and economical method. In this research, properties of suitable composite materials (sika wrap), adhesives and two ways of strengthening beams exposed to bending moment are presented. Passive or slack reinforcement is one way of strengthening. The most effective way of such a strengthening was to place reinforcement laminates in the stretched part of the wooden beam (lower part in our case), in order to investigate the effectiveness of externally bonding FRP to their soffits. The model is based on equilibrium and deformations compatibility requirements in and all parts of the strengthened beam, i.e., the wooden beam, the sika wrap composite plate and the adhesive layer. The theoretical predictions are compared with other existing solutions. This research is helpful for the understanding on mechanical behaviour of the interface and design of the composite-wooden hybrid structures. The results showed that the use of the new strengthening system enhances the performance of the wooden beam when compared with the traditional strengthening system.

복합모멘트접합을 갖는 콘크리트 충전 보-기둥 합성접합부의 반복하중 실험 (Cyclic Loading Tests of Concrete-Filled Composite Beam-Column Connections with Hybrid Moment Connections)

  • 임종진;김동관;이상현;이창남;엄태성
    • 한국강구조학회 논문집
    • /
    • 제28권5호
    • /
    • pp.345-354
    • /
    • 2016
  • 최근 합성 보-기둥 접합부를 위한 복합모멘트접합(hybrid moment connection)상세가 개발되었다. 기둥으로 팔각형태의 콘크리트 충전강관이 사용되었고, 보에는 U단면 콘크리트 충전강관이 사용되었다. 보-기둥 모멘트접합을 위해 보 강관은 기둥 강판에 직접 용접되었다. 하지만 보 하부 플랜지는 응력집중을 피하기 위하여 기둥 강판에 용접되지 않았고, 대신 보 플랜지의 인장력을 전달하기 위해 기둥 관통철근이 사용되었다. 기존 외다이어프램 보강상세 및 복합모멘트접합 상세를 갖는 총 4개의 실험체를 제작하고, 반복하중실험을 수행하였다. 실험결과 복합모멘트접합 상세는 보 플랜지의 인장력이 기둥 내부로 효과적으로 전달되었다. 또한, 하중재하능력 및 변형능력이 기존 외다이어프램 상세와 거의 동일한 수준으로 나타났다. 하지만, 최종 접합부 파괴모드는 복합모멘트접합 상세에 따라 영향을 받았다.

Buckling analysis in hybrid cross-ply composite laminates on elastic foundation using the two variable refined plate theory

  • Benselama, Khadidja;El Meiche, Noureddine;Bedia, El Abbas Adda;Tounsi, Abdelwahed
    • Structural Engineering and Mechanics
    • /
    • 제55권1호
    • /
    • pp.47-64
    • /
    • 2015
  • This paper presents the effect of hybridization material on variation of critical buckling load with different cross-ply laminates plate resting on elastic foundations of Winkler and Pasternak types subjected to combine uniaxial and biaxial loading by using two variable refined plate theories. Governing equations are derived from the principle of virtual displacement; the formulation is based on a new trigonometric shape function of displacement taking into account transverse shear deformation effects vary parabolically across the thickness satisfying shear stress free surface conditions. These equations are solved analytically using the Navier solution of a simply supported. The influence of the various parameters geometric and material, the thickness ratio, and the number of layers symmetric and antisymmetric hybrid laminates material has been investigated to find the critical buckling loads. The numerical results obtained through the present study with several examples are presented to verify and compared with other models with the ones available in the literature.

U-플랜지 트러스 복합보의 휨 내력에 대한 실험 연구 (Experimental Study on the Flexural Capacity of the U-Flanged Truss Hybrid Beam)

  • 오명호;김영호;김명한
    • 한국공간구조학회논문집
    • /
    • 제18권4호
    • /
    • pp.123-130
    • /
    • 2018
  • U-flanged truss beam is composed of u-shaped upper steel flange, lower steel plate of 8mm or more thickness, and connecting lattice bars welded on the upper and lower sides. The hybrid beam with U-flanged steel truss is made in the construction site through pouring the concrete, and designated as U-flanged truss hybrid beam. In this study the structural experiments on the 4 hybrid beams with the proposed basic shapes were performed, and the flexural capacities from the tests were compared with those from the theoretical approach. The failure modes of each specimen were quite similar. The peak load was reached with the ductile behavior after yielding, and the failure occurred through the concrete crushing. The considerable increasement of deformation was observed up to the concrete crushing. The composite action of concrete and steel member was considered to be reliable from the behavior of specimens. The flexural strength of hybrid beam has been evaluated exactly using the calculation method applied in the boubly reinforced concrete beam. The placement of additional rebars in the bottom instead of upper side is proposed for the efficient design of U-flanged truss hybrid beam.

Performance of damaged RC continuous beams strengthened by prestressed laminates plate: Impact of mechanical and thermal properties on interfacial stresses

  • Tahar, Hassaine Daouadji;Abderezak, Rabahi;Rabia, Benferhat;Tounsi, Abdelouahed
    • Coupled systems mechanics
    • /
    • 제10권2호
    • /
    • pp.161-184
    • /
    • 2021
  • Strengthening of reinforced concrete beams with externally bonded fiber reinforced polymer plates/sheets technique has become widespread in the last two decades. Although a great deal of research has been conducted on simply supported RC beams, a few studies have been carried out on continuous beams strengthened with FRP composites. This paper presents a simple uniaxial nonlinear analytical model that is able to accurately estimate the load carrying capacity and the behaviour of damaged RC continuous beams flexural strengthened with externally bonded prestressed composite plates on both of the upper and lower fibers, taking into account the thermal load. The model is based on equilibrium and deformations compatibility requirements in and all parts of the strengthened beam, i.e., the damaged concrete beam, the FRP plate and the adhesive layer. The flexural analysis results and analytical predictions for the prestressed composite strengthened damaged RC continuous beams were compared and showed very good agreement in terms of the debonding load, yield load, and ultimate load. The use of composite materials increased the ultimate load capacity compared with the non strengthened beams. The major objective of the current model is to help engineers' model FRP strengthened RC continuous beams in a simple manner. Finally, this research is helpful for the understanding on mechanical behaviour of the interface and design of the FRP-damaged RC hybrid structures.

직교이방성 재료의 구멍주위에 관한 하이브리드 응력해석시 요소크기의 효과 (Effect of element size in hybrid stress analysis around a hole in loaded orthotropic composites)

  • 백태현
    • 대한기계학회논문집A
    • /
    • 제21권10호
    • /
    • pp.1702-1711
    • /
    • 1997
  • A numerical study for the number of terms of a power series stress function and the effect of hybrid element size on stress analysis around a hole in loaded orthotropic composites is presented. The hybrid method coupling experimental and/or theoretical inputs and complex variable formulations involving conformal mappings and analytical continuity is used to calculate tangential stress on the boundary of the hole in uniaxially loaded, finite width glass epoxy tensile plate. The tests are done by rarying the number of terms, element size and nodal locations on the external boundary of the hybrid region. The numerical results indicate that the hybrid method is accurate and powerful in both experimental and numerical stress analysis.