• Title/Summary/Keyword: Hybrid combustion

Search Result 288, Processing Time 0.024 seconds

A Study on Combustion Characteristic with Chamber Pressure in Hybrid Rocket (하이브리드 로켓에서의 압력에 따른 연소특성에 관한 연구)

  • Cho, Jung-Tae;Kim, Gi-Hun;Lee, Jung-Pyo;Kim, Hak-Chul;Park, Seon-Woo;Park, Joon-Hyng;Han, Hee-Soo;Hwang, Jae-Woong;Moon, Hee-Jang;Sung, Hong-Gye;Kim, Jin-Kon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.243-246
    • /
    • 2008
  • The combustion characteristic of solid fuel with chamber pressure were experimentally studied in hybrid combustion. This paper was experimental confirmed whether solid fuel affected not only oxidizer mass flux but also chamber pressure. Poly-Ethylene(PE) was used as fuel, GOX was used as oxidizer. Chamber pressure was controled by nozzle throat diameter 6mm and 9mm. In low oxidizer mass flux, solid fuel regression rate was affected not only oxidizer mass flux but also chamber pressure. As well, the regression rate increase as chamber pressure increase with same oxidizer mass flux.

  • PDF

Power System Optimization for Electric Hybrid Unmanned Drone (전동 하이브리드 무인 드론의 동력 계통 최적화)

  • Park, Jung-Hwan;Lyu, Hee-Gyeong;Lee, Hak-Tae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.4
    • /
    • pp.300-308
    • /
    • 2019
  • For drones to be used for industrial or agricultural applications, it is necessary to increase the payload and endurance. Currently, the payload and endurance are limited by the battery technology for electric powered drones. In addition, charging or replacing the batteries may not be a practical solution at the field that requires near continuous operation. In this paper, a procedure to optimize the power system of an electric hybrid drone that consists of an internal combustion engine, a generator, a battery, and electric motors is presented. The example drone for crop dusting is sized for easy transportation with a maximum takeoff weight of 200 kg. The two main rotors that are mechanically connected to the internal combustion engine provides most of the lift. The drone is controled by four electric motors that are driven by the generator. By analyzing the flow of the energy, a methodology to select the optimum propeller and motor among the commercially available models is described. Then, a procedure of finding the optimum operational condition along with the proper gear reduction ratios for the internal combustion engine based on the test data is presented.

Transient Air-fuel Ratio Control of the Cylinder Deactivation Engine during Mode Transition (Cylinder Deactivation 엔진의 동작모드 전환 시 과도상태 공연비 제어)

  • Kwon, Min-Su;Lee, Min-Kwang;Kim, Jun-Soo;SunWoo, Myoung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.2
    • /
    • pp.26-34
    • /
    • 2011
  • Hybrid powertrain systems have been developed to improve the fuel efficiency of internal combustion engines. In the case of a parallel hybrid powertrain system, an engine and a motor are directly coupled. Because of the hardware configuration of the parallel hybrid system, friction and the pumping losses of internal combustion engines always exists. Such losses are the primary factors that result in the deterioration of fuel efficiency in the parallel-type hybrid powertrain system. In particular, the engine operates as a power consumption device during the fuel-cut condition. In order to improve the fuel efficiency for the parallel-type hybrid system, cylinder deactivation (CDA) technology was developed. Cylinder deactivation technology can improve fuel efficiency by reducing pumping losses during the fuel-cut driving condition. In a CDA engine, there are two operating modes: a CDA mode and an SI mode according to the vehicle operating condition. However, during the mode change from CDA to SI, a serious fluctuation of the air-fuel ratio can occur without adequate control. In this study, an air-fuel ratio control algorithm during the mode transition from CDA to SI was proposed. The control algorithm was developed based on the mean value CDA engine model. Finally, the performance of the control algorithm was validated by various engine experiments.

Comparison and Analysis of Fuel Consumption by CODAD, CODLOD and CODLAD System for Combat Support Ship (군수지원함의 CODAD, CODLOD 및 CODLAD 추진체계에 따른 연료 소비량 비교 및 분석)

  • Kim, Min-wook;Oh, Jin-seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.5
    • /
    • pp.1049-1059
    • /
    • 2017
  • After patrol corvett Cheonan was hit and sank on duty, the Republic of Korea Navy has tried to install hybrid propulsion system on naval ship to reduce vibration and noise problems during navigation. The hybrid propulsion system has advantage that propulsion motor can be propelled in low speed operation of the vessel. This can be a better quietness than a mechanical propulsion system which consists of a conventional internal combustion engines. And more economical operation is possible by using a propulsion motor in a low speed operation where a fuel efficiency of the internal combustion engine is poor. In this paper, we set up virtual ship on the basis of a combat support ship in the Republic of Korea Navy, economically compared and analyzed fuel consumption between conventional and hybrid propulsion system. As a result, it was confirmed that the fuel efficiency of hybrid propulsion system which use electric motor had been relatively improved.

The combustion characteristic of GOX flow change in Hybrid Rocket (하이브리드 로켓의 GOX 유동 변화에 따른 연소 특성)

  • Koo, Won-Mo;Lee, Chang-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.229-232
    • /
    • 2007
  • 하이브리드 로켓의 연소율을 높이기 위해 유동 특성을 바꾸면서 실험을 수행하였고 연소된 연료 내부 표면이 고르지 못한 것을 볼 수 있었다. 그 원인을 밝히기 위해 연료 표면을 관찰하고 유동가시화 실험을 한 결과 거친 연료 표면의 원인이 검댕 때문이고 이것은 국부적인 산화제 부족현상 때문에 발생하게 되었다는 것을 알 수 있었다. 또 연소 시 연료 전체에 발생하는 검댕의 특성은 이 현상이 하이브리드 로켓만의 독특한 특징인 분출효과 때문이라고 예측할 수 있게 해주었다.

  • PDF

Recent research activities on hybrid rocket in Japan

  • Harunori, Nagata
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.1-2
    • /
    • 2011
  • Hybrid rockets have lately attracted attention as a strong candidate of small, low cost, safe and reliable launch vehicles. A significant topic is that the first commercially sponsored space ship, SpaceShipOne vehicle chose a hybrid rocket. The main factors for the choice were safety of operation, system cost, quick turnaround, and thrust termination. In Japan, five universities including Hokkaido University and three private companies organized "Hybrid Rocket Research Group" from 1998 to 2002. Their main purpose was to downsize the cost and scale of rocket experiments. In 2002, UNISEC (University Space Engineering Consortium) and HASTIC (Hokkaido Aerospace Science and Technology Incubation Center) took over the educational and R&D rocket activities respectively and the research group dissolved. In 2008, JAXA/ISAS and eleven universities formed "Hybrid Rocket Research Working Group" as a subcommittee of the Steering Committee for Space Engineering in ISAS. Their goal is to demonstrate technical feasibility of lowcost and high frequency launches of nano/micro satellites into sun-synchronous orbits. Hybrid rockets use a combination of solid and liquid propellants. Usually the fuel is in a solid phase. A serious problem of hybrid rockets is the low regression rate of the solid fuel. In single port hybrids the low regression rate below 1 mm/s causes large L/D exceeding a hundred and small fuel loading ratio falling below 0.3. Multi-port hybrids are a typical solution to solve this problem. However, this solution is not the mainstream in Japan. Another approach is to use high regression rate fuels. For example, a fuel regression rate of 4 mm/s decreases L/D to around 10 and increases the loading ratio to around 0.75. Liquefying fuels such as paraffins are strong candidates for high regression fuels and subject of active research in Japan too. Nakagawa et al. in Tokai University employed EVA (Ethylene Vinyl Acetate) to modify viscosity of paraffin based fuels and investigated the effect of viscosity on regression rates. Wada et al. in Akita University employed LTP (Low melting ThermoPlastic) as another candidate of liquefying fuels and demonstrated high regression rates comparable to paraffin fuels. Hori et al. in JAXA/ISAS employed glycidylazide-poly(ethylene glycol) (GAP-PEG) copolymers as high regression rate fuels and modified the combustion characteristics by changing the PEG mixing ratio. Regression rate improvement by changing internal ballistics is another stream of research. The author proposed a new fuel configuration named "CAMUI" in 1998. CAMUI comes from an abbreviation of "cascaded multistage impinging-jet" meaning the distinctive flow field. A CAMUI type fuel grain consists of several cylindrical fuel blocks with two ports in axial direction. The port alignment shifts 90 degrees with each other to make jets out of ports impinge on the upstream end face of the downstream fuel block, resulting in intense heat transfer to the fuel. Yuasa et al. in Tokyo Metropolitan University employed swirling injection method and improved regression rates more than three times higher. However, regression rate distribution along the axis is not uniform due to the decay of the swirl strength. Aso et al. in Kyushu University employed multi-swirl injection to solve this problem. Combinations of swirling injection and paraffin based fuel have been tried and some results show very high regression rates exceeding ten times of conventional one. High fuel regression rates by new fuel, new internal ballistics, or combination of them require faster fuel-oxidizer mixing to maintain combustion efficiency. Nakagawa et al. succeeded to improve combustion efficiency of a paraffin-based fuel from 77% to 96% by a baffle plate. Another effective approach some researchers are trying is to use an aft-chamber to increase residence time. Better understanding of the new flow fields is necessary to reveal basic mechanisms of regression enhancement. Yuasa et al. visualized the combustion field in a swirling injection type motor. Nakagawa et al. observed boundary layer combustion of wax-based fuels. To understand detailed flow structures in swirling flow type hybrids, Sawada et al. (Tohoku Univ.), Teramoto et al. (Univ. of Tokyo), Shimada et al. (ISAS), and Tsuboi et al. (Kyushu Inst. Tech.) are trying to simulate the flow field numerically. Main challenges are turbulent reaction, stiffness due to low Mach number flow, fuel regression model, and other non-steady phenomena. Oshima et al. in Hokkaido University simulated CAMUI type flow fields and discussed correspondence relation between regression distribution of a burning surface and the vortex structure over the surface.

  • PDF

A Study on Structural Safety of the Solid Fuel Grain by Hot Flow inside a Hybrid Rocket Combustor (Multi-port 하이브리드 로켓 연소기에서 고온 산화제 유동에 의한 고체연료의 구조적 안전성에 대한 연구)

  • Do, Gyu-Sung;Yoon, Chang-Jin;Kim, Jin-Kon;Moon, Hee-Jang
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.15 no.4
    • /
    • pp.38-44
    • /
    • 2007
  • This paper describes the structural safety of solid fuel in the Hybrid Rocket Motor (HRM). Hybrid rocket combustion has the distinct regression characteristics which include the process of thermal pyrolysis and fuel vaporization. Most of all, this regression characteristics would structurally affect the strength of the fuel having a multi-port configuration, and even may cause the breaking from the fuel grain. This problem would probably influence the performance and operating safety of HRM. Therefore, for the safe operation of HRM, the critical port radius which determines the structurally safe region was discussed from the heat analysis of the solid fuel.

  • PDF

A study on engine performance of EGR valve problem in Hybrid vehicles (하이브리드 자동차의 EGR 밸브 오작동 시 엔진 성능에 미치는 영향)

  • Song, Rak Hyun;cho, Haeng Muk
    • Journal of Energy Engineering
    • /
    • v.24 no.3
    • /
    • pp.34-39
    • /
    • 2015
  • Recently, Air pollution is gradually increasing which are coming from the exhaust of the ICE vehicles in the world. ICE vehicle exhaust gas and $CO_2$ are widely suspected of contributing to the called greenhouse effect, fueling fears of global warming. Therefore, many countries are striving to decrease the vehicle exhaust gas and have developed a variety of policies as air pollution regulation plans. To comply with the regulations, automotive industry has developed hybrid vehicles, which have features of both ICE vehicles and electric vehicles. Hybrid car is eco-friendly and has lowered exhausting gases and improved fuel efficiency. This research has been written to show that break down cases with EGR valve in hybrid cars, steadily increasing in use, and to help with on-site maintenance.

A Study on the Performance Characteristics of the Hybrid Rocket with Blowdown Oxidizer Feeding System (블로우다운 산화제 공급방식을 적용한 하이브리드 추진 시스템의 성능특성에 관한 연구)

  • Yoon, Chang-Jin;Kim, Jin-Kon;Moon, Hee-Jang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.248-251
    • /
    • 2007
  • The blowdown oxidizer feeding system is effective in the respect of higher reliability by the small number of parts and the absence of additional pressurization tanks, but it also has the unfavorable disadvantage such as thrust variation during the operation. Thus, in order to understand the these performance characteristics inherent in the Hybrid Rocket Motor (HRM) with blowdown oxidizer feeding system, this study proposed the integrated mathematical model to describe physical phenomena in the following parts: the oxidizer tank, combustion chamber, fuel grain, nozzle and injector.

  • PDF

Behavior and Durability Analysis of Tractor applying a hybrid power system (하이브리드 동력시스템을 적용한 트랙터의 동적 거동 및 내구해석)

  • Kim, Byeong Sam;Lim, Gwang Gue
    • Journal of Auto-vehicle Safety Association
    • /
    • v.6 no.2
    • /
    • pp.61-66
    • /
    • 2014
  • This paper described on the motion of hybrid tractor trajectory for powertrain system. The dynamics behavior used to the tractor according to the characteristics of the road surface using $Daful^@$ analysis. The tractor industry is facing to a big problem about rising gas price and exhaust gas environment. Because it was possible overcoming the past drawback, hybrid vehicle had been decided as the best technical way since it has started operating the internal combustion engine with the electric power as the motive power. The vehicle structures have designed the model of a major power transmission factor. The simulation realized in this paper that motion of tractor being turned by torque and force of each joints. Driving characteristics, especially in recent years, IVHS (Intelligent Vehicle Tractor / System) technology, while receiving a lot of attention because of the tractor and the need to pursue high function is emerging as a more and more.