• Title/Summary/Keyword: Hybrid ceramic

Search Result 263, Processing Time 0.024 seconds

Evaluation of an Organic-Inorganic Hybrid Insulation Material using an Inorganic Filler and Polyurethane with a Foaming Condition (무기질 충진재와 폴리우레탄을 활용한 유·무기 복합 단열소재의 발포조건에 따른 특성 평가)

  • Noh, Hyun-Kyung;Song, Hun;Chu, Yong-Sik;Park, Ji-Sun;Lee, Jong-Kyu
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.654-658
    • /
    • 2012
  • In this work, the properties of an organic-inorganic hybrid insulating material using an inorganic filler and polyurethane foam with different foaming conditions were investigated. At weight ratios of polyol and isocyanate of 1 to 1.2 good foaming properties were noted. In addition, an addition of 0.4 g of water, 0.1 g of surfactant, and 0.1 g of catalyst with respect to the composites of polyol at 5 g and isocyanate at 6 g showed the lowest apparent density and thermal conductivity. The pore size was smaller in the organic-inorganic hybrid foaming body with an increase in the $CaCO_3$ addition amount. Moreover, the apparent density and thermal conductivity were increased when the added amount of $CaCO_3$ increased. Increasing the amount of $CaCO_3$ powder is expected to improve the flame retardant capabilities; however, doing this tends to increase the apparent density and thermal conductivity.

A Study on Hybrid material of Making Dental restorations by CAD/CAM System (치과 CAD/CAM용 복합소재를 이용한 치과보철물의 제작에 대한 연구)

  • Choi, Beom-Jin
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.23 no.2
    • /
    • pp.86-94
    • /
    • 2014
  • In recent years, perhaps the biggest driver in new material development is the desire to improve crown and bridge esthetics compared to the traditional PFM or all-metal restorations. As such, zirconia, leucite-containing glass ceramic and lithium disilicate glass ceramic have become prominent in the dental practice. Each material type performs differently regarding strength, toughness, ease of machining and the final preparation of the material prior to placement. For example, glass ceramic are typically weaker materials which limits its use to single-unit restorations. On the other hand, zirconia has a high fracture toughness which enables multi-unit restorations. This material requires a long sintering procedure which excludes its use for fast chair side production. Developed hybrid material of CAD/CAM is contained nano ceramic elements. This new material, called a Resin Nano Ceramic is unique in durability and function. The material is not a resin or composite. It is also not a pure ceramic. The material is a mixture of both and consists of ceramic. Like a composite, the material is not brittle and is fracture resistant. Like a glass ceramic, the material has excellent polish retention for lasting esthetics. The material is easily machined chair side or in a dental lab, polishes quickly to an esthetic finish and if necessary, can be useful restoratives.

Catalyst Enhanced by Controlling Structure and Shape of Nanocrystals, Support Materials, and Hybrid System in DMFCs (나노입자의 구조와 모양, 담지체 및 하이브리드 시스템 제어를 통한 직접메탄올 연료전지의 촉매 개발)

  • Lee, Young Wook;Shin, Tae Ho
    • Ceramist
    • /
    • v.22 no.2
    • /
    • pp.189-197
    • /
    • 2019
  • Direct methanol fuel cells (DMFCs) have found a wide variety of commercial applications such as portable computer and mobile phone. In a fuel cell, the catalysts have an important role and durability and efficiency are determined by the ability of the catalyst. The activity of the catalyst is determined by the structure and shape control of the nanoparticles and the dispersion of the nanoparticles and application system. The surface energy of nanoparticles determines the activity by shape control and the nanostructure is determined by the ratio of bi- and tri-metals in the alloy and core-shell. The dispersion of nanoparticles depends on the type of support such as carbon, graphen and metal oxide. In addition, a hybrid system using both optical and electrochemical device has been developed recently.

Effect of Organic Materials in Water Treatment by Hybrid Module of Multi-channel Ceramic Microfiltration and Activated Carbon Adsorption

  • Park, Jin-Yong;Lee, Sang-Min
    • Korean Membrane Journal
    • /
    • v.11 no.1
    • /
    • pp.21-28
    • /
    • 2009
  • We investigated the effect of organic materials on membrane fouling in advanced drinking water treatment by a hybrid module packed with granular activated carbon (GAC) outside multi-channel ceramic microfiltration membrane. Synthetic water was prepared with humic acid and kaolin to simulate natural water resouces consisting of natural organic matter and inorganic particles. Kaolin concentration was fixed at 30 mg/L and humic acid was changed as 2~10 mg/L to inspect the effect of organic matters. Periodic back-flushing using permeate water was performed for 10 sec per filtration of 10 min. As a result, both resistance of membrane fouling (Rf) and permeate flux (J) were influenced highly by concentration of humic acid. It proved that NOM like humic acid could be an important factor on membrane fouling in drinking water treatment. Turbidity and UV254 absorbance were removed up to above 97.4% and 59.2% respectively.

A study on ceramic and metal composite material joining for micro filter using thermal spray and laser welding (용사법과 레이저 용접을 이용한 복합소재 미세필터 연구)

  • Song, In-Gyu;Choi, Hae-Woon;Kim, Joo-Han;Yun, Bong-Han;Park, Jung-Eon
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.32-38
    • /
    • 2010
  • Hybrid material(ceramic+metal) processes were developed for micro filter using ceramics coating at metal filter surface by thermal spray method, micro hole drilling at ceramic coated filter surface by femtosecond laser, and fiber laser direct welding of ceramic and metal (SUS304, SM45C) by capillary effect. Thermal spray process was used for ceramic powders and metal filters. The used ceramic powders were $Al_2O_3+40TiO_2$(Metco 131VF) powder of maximum particle size $5{\mu}m$ and ${Al_2O_3}99+$(Metco 54NS) power of maximum particle size 45m. Ceramic coated filters using thermal spray method had a great influence on powder material, particle size and coating thickness but had a fine performance as a micro filter. CW fiber laser was used to drill the top ceramic layer and melt the bottom metal layer for joining applications.

  • PDF

Fabrication and Evaluation of Heat Transfer Property of 50 Watts Rated LED Array Module Using Chip-on-board Type Ceramic-metal Hybrid Substrate (Chip-on-board 형 세라믹-메탈 하이브리드 기판을 적용한 50와트급 LED 어레이 모듈의 제조 및 방열특성 평가)

  • Heo, Yu Jin;Kim, Hyo Tae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.149-154
    • /
    • 2018
  • This paper describes the fabrication and heat transfer property of 50 watts rated LED array module where multiple chips are mounted on chip-on-board type ceramic-metal hybrid substrate with high heat dissipation property for high power street and anti-explosive lighting system. The high heat transfer ceramic-metal hybrid substrate was fabricated by conformal coating of thick film glass-ceramic and silver pastes to form insulation and conductor layers, using thick film screen printing method on top of the high thermal conductivity aluminum alloy heat-spreading panel, then co-fired at $515^{\circ}C$. A comparative LED array module with the same configuration using epoxy resin based FR-4 PCB with thermalvia type was also fabricated, then the thermal properties were measured with multichannel temperature sensors and thermal resistance measuring system. As a result, the thermal resistance of the ceramic-metal hybrid substrate in the $4{\times}9$ type LEDs array module exhibited about one third to the value as that of FR-4 substrate, implying that at least triple performance of heat transfer property as that of FR-4 substrate was realized.

Trend of Ceramic Materials Technology for Beauty-care (뷰티케어용 세라믹소재기술 동향)

  • Chang, Jeong Ho
    • Ceramist
    • /
    • v.21 no.3
    • /
    • pp.302-308
    • /
    • 2018
  • This work reported the trends of bioceramic materials for beauty-care applications with the several represent examples - tone-up, sun-care and anti-pollution cosmetics. The development of cosmetic techniques was discussed and reviewed with various ceramic hybrid materials. Moreover, we also reported the preparation and application of functional cosmetics with silicified liposome particles as a good make-up material for controlled release with natural compounds. The homogeneous loading and highly controlled-release formulation with porous and silicified ceramic liposome ceramic materials were discussed.

Development of an Oraganic-Inorganic Hybrid Coating Solution for Improvement in Flame Retardant Properties of Wallpapers (벽지의 방염특성을 개선하기 위한 유-무기 하이브리드 코팅 용액 개발)

  • Jeong, Gyu Jin;Kang, Tae Wook;Kim, Jin Ho;Kim, Bong Man;Seo, Eun Kyung;Bae, Byungseo;Kim, Sun Woog
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.2
    • /
    • pp.178-183
    • /
    • 2022
  • For enhancing the flame-retardant properties of wallpapers, we developed an organic-inorganic hybrid solution with ZrSiO4 as a functional ceramic powder, coated on non-woven fabric using dip coating, spray coating, and slot-die coating methods. Their flame retardant properties were characterized by a 45° combustion tester, which is manufactured according to the flame-retardant performance standard (KOFEIS 1001 and KS F 2819). In organic-inorganic hybrid solution, with increasing the concentration of acid-catalyst (acetic acid), the precipitation of ZrSiO4 powders increased, and the flame retardant properties decreased. The highest flame retardant result was obtained for the solution adding 5 wt% acetic acid. The optimization of the coating method and coating number resulted in the most excellent flame-retardant properties being obtained for the non-woven fabric coated for 5 or 7 times by dip coating method, and their flame-retardant properties corresponded to class 2 flame-retardant performance of wallpapers.

Friction and Wear Characteristics of Bonded Film Lubricants of Organically Modified Hybrid Ceramic Binder Materials (유기변성 하이브리드 세라믹 물질을 결합제로 이용한 고체피막윤활제의 마찰마모 특성)

  • 한흥구;공호성;윤의성
    • Tribology and Lubricants
    • /
    • v.19 no.4
    • /
    • pp.203-210
    • /
    • 2003
  • In order to enhance the thermal stability of binder materials of bonded type solid lubricants, several metal-alkoxide based sol-gel materials such as methyltrimethoxysilane(MTMOS), titaniumisopropoxide (Ti(Opr$\^$i/)$_4$), zirconiumisopropoxide (Zr(Opr$\^$i/)$_4$) and aluminumbutoxide (Al(Obu$\^$t/)$_4$) were modified chemically by both epoxy and acrylic silane compounds. Friction and wear characteristics of the bonded solid lubricants, whose binders were of several hybrid ceramic materials, were tested with a reciprocating tribo-tester. Wear life was evaluated with respect to the heat-curing temperature, friction temperature, type of supplement lubricants, and ratio of binder materials. Test results showed that the Si-Zr hybrid ceramic materials modified by epoxy-silane compounds had a higher wear life compared to others. Sb$_2$O$_3$ was the most effective supplement lubricants in the high temperature, and BUS analyses revealed that it was caused mainly by a strong anti-oxidation effect to MoS$_2$ particles. The higher heat-curing temperature resulted in the higher wear life, and the higher friction temperature resulted in the lower wear life.

An Experimental Study on the Micro Friction and Wear Characteristics of Organically Modified Hybrid Ceramic Materials by A Sol-Gel Process (졸-겔 공정에 의한 유기변성 하이브리드 세라믹 물질의 미세 마찰마모 특성)

  • Han, Hung-Gu;Kong, Ho-Sung;Yoon, Eui-Sung;Yang, Seung-Ho
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.215-225
    • /
    • 2002
  • In order to enhance the thermal stability of binder materials of bonded type solid lubricants, several combinations of metal-alkoxide based sol-gel materials such as methyltrimethoxysilane(MTMOS), $titaniumisopropoxide(Ti(Opr^{j})_{4})$, $zirconiumisopropoxide(Zr(Opr^{j})_{4})$ and $aluminumbutoxide(Al(Obu^{t})_{4})$ were chemically modified by epoxy-, acrylic- and fluoro-silane compounds, respectively, in this work. Friction and wear characteristics of these hybrid ceramic materials were tested with a micro tribe-tester where a reciprocating steel ball slid on a test material, and the tribological property was also evaluated with respect to both heat-curing temperature and tile time. Test results generally showed that hybrid ceramic materials modified by epoxy-silane compounds had a low friction compared to others. And the higher heat-curing temperature and the longer heat treatment time resulted in the higher friction and the lower wear. IR spectroscopic analyses revealed that it was caused mainly by the increased metal oxide content in hybrid ceramics when the heat-curing temperature was over $320^{\circ}C$.

  • PDF