• 제목/요약/키워드: Hybrid battery

검색결과 538건 처리시간 0.031초

슈퍼 커패시터를 결합한 하이브리드 전지의 효율 개선 (Improving the Efficiency for Hybrid Battery Combining Super Capacitor)

  • 지승현;김수호;김주선;윤영수
    • 한국전기전자재료학회논문지
    • /
    • 제20권5호
    • /
    • pp.410-414
    • /
    • 2007
  • To prevent degradation of battery efficiency generated by serious current variation in rechargeable batteries, we researched a hybrid battery combining a super capacitor and a rechargeable battery. The hybrid battery shows high efficiency in a lifetime and a voltage drop. The hybrid battery was composed of a rechargeable battery, a current regulator and a super capacitor that can be used with supporting power. Before the experiment, the hybrid battery was simulated for current regulation and an electric current in a super capacitor by using the Pspice program. After that, we compared the efficiency of the hybrid battery with the efficiency of the normal battery. In this result, we demonstrated that the hybrid battery has a higher efficiency and a longer lifespan than the normal battery.

A Study on Optimal Operation Strategy for Mild Hybrid Electric Vehicle Based on Hybrid Energy Storage System

  • Bae, SunHo;Park, Jung-Wook
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권2호
    • /
    • pp.631-636
    • /
    • 2018
  • This paper proposed an optimal operation strategy for a hybrid energy storage system (HESS) with a lithium-ion battery and lead-acid battery for mild hybrid electric vehicles (mild HEVs). The proposed mild HEV system is targeted to mount the electric motor and the battery to a conventional internal combustion engine vehicle. Because the proposed mild HEV includes the motor and energy storage device of small capacity, the system focuses on low system cost and small size. To overcome these limitations, it is necessary to use a lead acid battery which is used for a vehicle. Thus, it is possible to use more energy using HESS with a lithium battery and a lead storage battery. The HESS, which combines the lithium-ion battery and the secondary battery in parallel, can achieve better performance by using the two types of energy storage systems with different characteristics. However, the system requires an operation strategy because accurate and selective control of the batteries for each situation is necessary. In this paper, an optimal operation strategy is proposed considering characteristics of each energy storage system, state-of-charge (SOC), bidirectional converters, the desired output power, and driving conditions in the mild HEV system. The performance of the proposed system is evaluated through several case studies with respect to energy capacity, SOC, battery characteristic, and system efficiency.

건물용 독립형 1kW급 PEMFC-배터리 하이브리드 시스템 기술 개발 (Development of Independent 1 kW-class PEMFC-Battery Hybrid System for a Building)

  • 양석란;김중석;최미화
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제5권2호
    • /
    • pp.113-120
    • /
    • 2019
  • We have developed 1 kW-class PEMFC-battery hybrid system independently powering to the building, through the process of system design, current load characteristics analysis, power system configuration for demonstration site and performance evaluation. In order to use the fuel cell and battery as the hybrid type, a control technology for the charging/discharging decision and charging speed of the battery is required rather than using fuel cell. Also output power distribution between PEMFC and the battery is a core of energy management technology. It is confirmed that it is possible to supply independently 1kW powering the building to ensure optimal energy management through the power control experiment of the hybrid system.

Carbon계 Hybrid Capacitor의 전기 화학적 기술 및 Li-ion Battery의 혼성 동력원 특성 (Electrochemical Characteristics of Carbon/Carbon Hybrid Capacitor and Li-ion Battery/Hybrid Capacitor Combination)

  • 이선영;김익준;문성인
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.597-598
    • /
    • 2005
  • Recently, the performance of portable electric equipment can often improved by a Li-ion battery assisted by a supercapacitor. A supercapacitor can provide high power density as well as a low resistance in the hybrid system. In this study, we have prepared, as the pluse power souce, a commercially supplied Li-ion battery with a capacity of 700mAh and AC resistivity of $60m\Omega$ at 1kHz and nonaqeous asymmetric hybrid capacitor composed of an activated carbon cathode and MCMB anode, and have examined the electrochemical characteristics of hybrid capacitor and the pulse performances of parallel connected battery/hybrid capacitor source. The nonaqueous asymmetric hybrid capacitor, the stacks of 10 pairs of the cathode, the porous separator and the anode electrode were housed in Al-laminated film cell. The hybrid capacitor, which was charged and discharged at a constant current at $0.25mA/cm^2$ between 3 and 4.3V, has exhibited the capacitance of 100F. And the equivalent series resistance was $32m\Omega$ at 1kHz. By combining a Li-ion battery and a hybrid capacitor, the pulse performance of battery can be improved 23% in run time under a pulse discharge of 7C-rate.

  • PDF

리튬이차전지와 슈퍼커패시터로 구성된 하이브리드 셀의 전기화학적 특성 (Electrochemical Characteristics of Hybrid Cell Consisting of Li Secondary Battery and Supercapacitor)

  • 김상길;길보민;황갑진;유철휘
    • 한국수소및신에너지학회논문집
    • /
    • 제30권1호
    • /
    • pp.43-48
    • /
    • 2019
  • This study investigates the electrochemical characteristics of the hybrid cell that combined the advantageous characteristics of Li secondary battery and supercapacitor, high energy density and high power density, respectively. Electrochemical behaviors of the hybrid cell was characterized by charge/discharge, cycle and impedance tests. The hybrid cell using Li secondary battery and supercapacitor had better discharge capacity and cycle performance than that of using Li secondary battery only. Proper design of such a hybrid cell system is expected to result in substantial benefits to the well being of the Li secondary battery. The hybrid cell involving Li secondary battery for high energy density and supercapacitor for high power density may be the possible solution for future energy storage system.

직렬형 하이브리드 굴절차량용 대용량 LPB 팩의 적용 및 성능 평가 (Performance Evaluation for Application of Large Capacity LPB Pack Equipped to Series Hybrid Articulated Vehicle)

  • 이강원;목재균
    • 한국전기전자재료학회논문지
    • /
    • 제25권11호
    • /
    • pp.930-937
    • /
    • 2012
  • Newly developed Series hybrid low-floor articulated vehicle which can meet both road and railway running conditions. It has the rated driving speed of 80 km/h and three driving modes with hybrid(engine+battery) driving mode, engine driving mode, battery driving mode. The battery driving mode requires the several 10 km running without additional charging operation. The vehicle has been equipped with LPB (lithium polymer battery) pack for the series hybrid propulsion system. LPB pack consists of 168 cells (3.7 V in a cell, 80 Ah) in series, DC Circuit breaker, mechanical rack, BMS (battery management system). This paper has shown the design process of LPB pack and application to the vehicle. Driving results in the road was successful to be satisfied with the requirement of the series hybrid vehicle.

퍼지 논리를 이용한 연료전지/축전지 하이브리드 시스템의 운전제어 (Energy management strategies of a fuel cell/battery hybrid system using fuzzy logics)

  • 정귀성;이원용;김창수
    • 한국수소및신에너지학회논문집
    • /
    • 제15권1호
    • /
    • pp.1-11
    • /
    • 2004
  • Hybrid power systems with fuel cells and batteries have the potential to improve the operation efficiency and dynamic response. A proper load management strategy is important to better system efficiency and endurance in hybrid systems. In this paper, a fuzzy logic algorithm has been used to determine the fuel cell output power depending on the external required power and the battery state of charge(SoC). If the required power of the hybrid system is small and the SoC is small, then the greater part of the fuel cell power is used to charge the battery pack. If the required power is relatively big and the SoC is big, then fuel cell and battery are concurrently used to supply the required power. These IF-THEN operation rules are implemented by fuzzy logic for the energy management system of hybrid system. The strategy is evaluated by simulation. The results show that fuzzy logic can be effectively used to optimize the operational efficiency of hybrid system and to maintain the battery SoC properly.

배터리 모듈의 경량화 및 품질 향상을 위한 선택적 복합재료 패치에 관한 연구 (A Study on Selective Composite Patch for Light Weight and Quality Improvement of Battery Module)

  • 이승찬;하성규
    • Composites Research
    • /
    • 제32권1호
    • /
    • pp.13-20
    • /
    • 2019
  • 본 연구에서는 전기 자동차의 주요 부품 중 하나인, Battery Module의 품질 Issue 및 부품특성 개선을 위해 복합재료를 사용하여 구조보강 하였으며, 단일소재의 단점을 극복할 수 있는 Hybrid 개념의 기구 구조 최적화를 수행하고 성능을 비교하였다. 이를 위해 고전 적층 판 이론(Classical Laminated Plate Theory, CLPT)에 따른 복합재료 주요 설계 변수 도출 및 복합재료 물성 예측 알고리즘에 대해 연구하였으며, 설계된 복합재료의 기계적 물성을 바탕으로 유한요소해석(FEM)을 통해 Battery Module의 성능을 검증하였다. 이를 통해 자동차 Battery 부품의 안정성 및 경량화 등의 부품 특성 개선 여부를 확인할 수 있었다. 최종적으로 검증결과에 따르면 Selective Composite Patch로 보강된 Hybrid Battery Module은 기존 Al Battery Module에 비해 30%의 중량 감소 및 제품 두께 32.5%를 줄일 수 있고, 충격 성능 유지 등 Hybrid 구조의 장점을 입증하였다.

Evaluation of Solar-Diesel-Battery Hybrid System for Off-Grid Rural Electrification in Myanmar

  • Win, Phyu Phyu;Jin, Young Gyu;Yoon, Yong Tae
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권6호
    • /
    • pp.2138-2145
    • /
    • 2017
  • A hybrid system combining renewable technologies with diesel generators is a promising solution for rural electrification. Myanmar has many renewable energy resources, and many regions that cannot be supplied with electricity from the main grid. Therefore, in this study, we select a village in Myanmar, which is located far away from the substation, and evaluate the economic feasibility of a hybrid system for the village considering the specific local conditions and resource availability. We consider a hybrid system composed of a photovoltaic source, diesel generator, battery energy storage system, and converter. The load profiles of the household data from the village, and the solar radiation profiles are determined. The advantages of the hybrid system, in terms of cost, reliability, and environmental effects are analyzed through simulations using commercial software. The simulation results show that, for the selected village in Myanmar, a hybrid system with battery energy storage can reduce the cost and greenhouse gas emissions while maintaining reliability. We also obtain an optimized design in terms of the component size for the selected hybrid system with battery energy storage.

가정용 독립 연료전지-배터리 하이브리드 에너지 관리 기술 개발 (Energy Management Technology Development for an Independent Fuel Cell-Battery Hybrid System Using for a Household)

  • 양석란;김정석;최미화;김영배
    • 한국수소및신에너지학회논문집
    • /
    • 제30권2호
    • /
    • pp.155-162
    • /
    • 2019
  • The energy management technology for an independent fuel cell-battery hybrid system is developed for a household usage. To develop an efficient energy management technology, a simulation model is first developed. After the model is verified with experimental results, three energy management schemes are developed. Three control techniques are a fuzzy logic control (FLC), a state machine control (SMC), and a hybrid method of FLC and SMC. As the fuel cell-battery hybrid system is used for a house, battery state of charge (SOC) regulation is the most important factor for an energy management because SOC should be kept constant every day for continuous usage. Three management schemes are compared to see SOC, power split, and fuel cell power variations effects. Experimental results are also presented and the most favorable strategy is the state machine combined fuzzy control method.