• 제목/요약/키워드: Hybrid Vibration Control

검색결과 189건 처리시간 0.023초

양팔 협조 유연 매니퓰레이터의 진동억제 제어 (Vibration Suppression Control of Two Cooperating Flexible Manipulators)

  • 김진수
    • 한국생산제조학회지
    • /
    • 제19권5호
    • /
    • pp.645-652
    • /
    • 2010
  • For free motions, vibration suppression of single flexible manipulators has been one of the hottest research topics. However, for cooperative motions of multiple flexible manipulators, a little effort has been devoted for the vibration suppression control. So, the aim of this paper is to develop a hybrid force/position control and vibration suppression control scheme for multiple cooperation flexible manipulators handling a rigid object. In order to clarify the discussion, the motions of dual-arm experimental flexible manipulator are considered. Using the developed model, we control a robotic system with hybrid position/force control scheme. Finally, Experiments are performed, and a comparison of experimental results is given to clarify the validity of our control scheme.

노치 필터 제어기법을 이용한 반작용 휠 미소진동 절연장치의 절연성능 평가 (Performance Evaluation of RWA Vibration Isolator Using Notch Filter Control)

  • 박지용;서종은;이대은;한재흥
    • 한국소음진동공학회논문집
    • /
    • 제26권4호
    • /
    • pp.391-397
    • /
    • 2016
  • Vibration disturbances induced by the reaction wheels can severely degrade the performance of high precision payloads on board satellites with high pointing stability requirements. The unwanted disturbances produced by the reaction wheels are composed of fundamental harmonic disturbances due to the flywheel imbalance and sub/higher harmonic disturbances due to bearing irregularities, motor imperfections and so on. Because the wheel speed is constantly changed during the operation of a reaction wheel, the vibration disturbance induced by the reaction wheels can magnify the satellite vibration when the rotating frequency of wheel meets the natural frequency of satellite structure. In order to provide an effective isolation of the reaction wheel disturbances, isolation performance of a hybrid vibration isolator is investigated. In this paper, hybrid vibration isolator that combines passive and active components is developed and its hybrid isolation performance using notch filter control is evaluated in single-axis. The hybrid isolation performance using notch filter control show additional performance improvement compared to the results using only passive components.

지반 기진력을 받는 구조물의 진동 제어를 위한 Hybrid Mass Damper 의 유용성 연구 (A Study on the Adaptability of Hybrid Mass Damper for the Vibration Control of Structure under Base Excitation)

  • 임채욱;정태영;문석준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 추계학술대회논문집
    • /
    • pp.268-275
    • /
    • 2000
  • A hybrid mass damper that combines a tuned mass damper and an actuator has been recognized to be one of the most promising devices for vibration control of a tall building subjected to dynamic loads such as wind and earthquake. In this paper, in order to reduce vibration levels of a 5-story test structure, a hybrid mass damper using AC-servomotor was designed and developed. And control performances using HMD and TMD under random and earthquake excitations are compared through experimental test. It is confirmed that it is more effective to reduce the vibration levels of the test structure using HMD especially for earthquake excitation.

  • PDF

전기적-기계적 수동감쇠기를 이용한 빔의 진동제어 (Vibration Control of Beams Using Mechanical-Electrical Hybrid Passive Damping System)

  • 안상준;박현철;박철휴
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.362-367
    • /
    • 2003
  • A new mechanical-electrical hybrid passive dam ping treatment is proposed to improve the performance of structural vibration control. The proposed hybrid passive damping system consists of a constrained layer damping treatment and a shunt circuit. In a passive mechanical constrained layer damping, a viscoelastic material damping layer is used to control the structural vibration modes in high frequency range. The passive electrical damping is designed for targeting the vibration amplitude in the low frequency range. The governing equations of motion are derived through the Hamilton's principle. The obtained mathematical model is validated experimentally. The presented theoretical and experimental techniques provide invaluable tools for controlling the multiple modes of a vibrating structure over a wide frequency band.

  • PDF

압전작동기 마운트를 이용한 능동진동제어 (Active Vibration Control Using Piezostack Based Mount)

  • 벤큐오;최상민;팽용석;한영민;최승복;문석준
    • 한국소음진동공학회논문집
    • /
    • 제18권4호
    • /
    • pp.386-392
    • /
    • 2008
  • 이 논문에서는 하이브리드 마운트의 능동진동제어 성능에 대하여 기술하였다. 제안된 하이브리드 마운트는 압전작동기의 능동요소와 고무의 수동요소로 구성하였다. 압전작동기의 작동력 특성과 고무의 동적 특성을 실험적으로 구하여 이를 바탕으로 하이브리드 마운트를 설계 및 제작하였다. 그리고 특정 질량을 결합한 진동제어 시스템을 구축하고, 그 시스템의 지배 방정식을 수립하였다. 지면으로부터 전달되는 진동을 능동적으로 절연시키기 위해서 앞먹임 제어기를 구축하고 실험적으로 구현하였다. 그리고 가속도, 힘 전달력 등 진동제어 성능을 시간과 주파수 영역에서 평가하였다.

전자기 작동기와 고무를 이용한 하이브리드 마운트의 설계 및 진동제어 응용 (Design of Hybrid Mount Using Rubber and Electromagnetic Actuator with Application to Vibration Control)

  • 팽용석;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.915-918
    • /
    • 2006
  • This paper presents an active vibration control of a 1-DOF system using a hybrid mount which consists of elastic rubber and electromagnetic actuator. After identifying stiffness, damping properties of the elastic rubber and electromagnetic element, a mechanical model of the hybrid mount is established. The mount model is then incorporated into the 1-DOF system and the governing equation of motion is obtained in a state space. A sliding mode controller is designed in order to actively attenuate the vibration of the system control responses such as acceleration and transmitted force of the 1 -DOF system are presented in time domain.

  • PDF

전기적-기계적 수동감쇠기를 이용한 빔의 진동제어 (Vibration Control of Beams Using Mechanical-Electrical Hybrid Passive Damping System)

  • 박철휴;안상준;박현철
    • 한국소음진동공학회논문집
    • /
    • 제13권8호
    • /
    • pp.651-657
    • /
    • 2003
  • A new mechanical-electrical hybrid passive damping treatment is proposed to improve the performance of structural vibration control. The proposed hybrid passive damping system consists of a constrained layer damping treatment and a shunt circuit. In a passive mechanical constrained layer damping, a viscoelastic material damping layer is used to control the structural vibration modes in high frequency range. The passive electrical damping is designed for targeting the nitration amplitude in the low frequency range. The governing equations of motion are derived through the Hamilton's principle. The obtained mathematical model Is validated experimentally. The presented theoretical and experimental techniques provide invaluable tools for controlling the multiple modes of a vibrating structure over a wide frequency band.

관성형 작동기를 이용한 능동 하이브리드 마운트 시스템의 진동제어 성능 평가 (Evaluation of Vibration Control Performance for Active Hybrid Mount System Featuring Inertial Actuator)

  • 오종석;최승복;벤큐오;문석준
    • 한국소음진동공학회논문집
    • /
    • 제21권8호
    • /
    • pp.768-773
    • /
    • 2011
  • This work presents an experimental investigation on vibration control of the active hybrid mount system for naval ships. To reduce unwanted vibrations, this paper proposes an active mount which consists of rubber element, piezostack actuator and inertial mass. The rubber element supports a mass. The piezostack actuator generates a proper control force and supply it to the mount system. To avoid being broken piezostack actuator, an actuator of the proposed mount is devised as an inertial type, in which a piezostack actuator is positioned between inertial mass and rubber element. Vibration control performances of the active mount system are evaluated via experiment. To attenuate the unwanted vibrations transferred from upper mass, the feedforward control is designed. In order to implement a control experiment, the active mount system supported by four active mounts is constructed. For realization of the controller, one-chip board is manufactured and utilized. Subsequently, vibration control performances of the proposed active mount system are experimentally evaluated in frequency domains.

전자기 작동기와 압전 작동기를 이용한 하이브리드 마운트의 제어성능 평가 (Control Performance of Hybrid Mount Using Electromagnetic Actuator and PZT Actuator)

  • 팽용석;육지용;문석준;최승복
    • 한국소음진동공학회논문집
    • /
    • 제17권7호
    • /
    • pp.617-623
    • /
    • 2007
  • This paper presents an active vibration control of a dynamic system using hybrid mount which consists of elastic rubber-piezostack actuator and elastic rubber-electromagnetic actuator, respectively. After identifying stiffness, damping properties of the elastic rubber, PZT actuator and electromagnetic element, a mathematical model of the hybrid mount is established. The mount model is then incorporated into the dynamic system and the governing equation of motion is obtained in a state space. A sliding mode controller is designed in order to actively attenuate the vibration of the system. Control responses such as acceleration and transmitted force of the dynamic system are experimentally evaluated and presented in time and frequency domains.

전자기 작동기와 압전 작동기를 이용한 하이브리드 마운트의 제어성능 평가 (Control Performance of Hybrid Mount Using Electromagnetic Actuator and PZT Actuator)

  • 팽용석;육지용;문석준;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.1131-1136
    • /
    • 2007
  • This paper presents an active vibration control of a 1-DOF system using hybrid mount which consists of elastic rubber and PZT(piezostack) actuator and elastic rubber and electromagnetic actuator, respectively After identifying stiffness, damping properties of the elastic rubber, PZT actuator and electromagnetic element, a mathematical model of the hybrid mount is established. The mount model is then incorporated into the 1-DOF system and the governing equation of motion is obtained in a state space. A sliding mode controller is designed in order to actively attenuate the vibration of the system. Control responses such as acceleration and transmitted force of the 1-DOF system are experimentally evaluated and presented in time and frequency domains.

  • PDF