• 제목/요약/키워드: Hybrid Truck

검색결과 17건 처리시간 0.022초

수도권 화물차량 기.종점자료 신뢰도 향상 방안 (Increasing the Reliability of Truck O-D Matrices Estimation in the Seoul Metropolitan Area)

  • 김채만;김락기;정용기
    • 대한교통학회지
    • /
    • 제27권4호
    • /
    • pp.145-154
    • /
    • 2009
  • 본 연구는 도로상의 화물차량 관측교통량과 가장 잘 부합하는 화물차량 기 종점통행량을 생성하는 모형을 개발하는 것이다. 본 연구에서는 비통행배정과 통행배정(GM모형)을 순차적으로 사용한 통합모형(Hybrid Method)을 개발하고, 통합모형과 GM모형을 수도권에 적용하여 비교 평가한 결과 평균오차율과 %RMSE에서 통합모형이 더 신뢰도 높은 화물차량 기 종점통행량을 생성하는 것으로 나타났다. 통합모형으로 보정된 수도권 화물차량 기 종점통행량은 첫째, 화물차량을 차종별로 구분하여 제시함으로써 활용 영역을 확장시켰다. 둘째, 기존 화물차량 기 종점통행량 보다 평균오차율과 %RMSE가 낮은 신뢰도 높은 화물차량 기 종점통행량을 산출하였다. 셋째, 현재뿐만 아니라 장래 화물차량 기 종점 자료를 제시함으로써 타당성 조사 등에 활용이 가능하게 하였다.

In-situ dynamic loading test of a hybrid continuous arch bridge

  • Gou, Hongye;Li, Liang;Hong, Yu;Bao, Yi;Pu, Qianhui
    • Structural Engineering and Mechanics
    • /
    • 제77권6호
    • /
    • pp.809-817
    • /
    • 2021
  • In this study, the dynamic behavior of a three-span hybrid continuous arch bridge under vehicle loading is investigated. The natural vibration characteristics of the bridge were analyzed through pulsation test. In the dynamic loading test, the vibrations of the bridge under different truck speeds and different pavement conditions were tested, and time histories of deflection and acceleration of the bridge were measured. Based on the dynamic loading test, the impact coefficient was analyzed. The results indicate that the pavement smoothness had more impacts on the vibration of the bridge than the truck's speed. The vertical damping of the bridge under the excitation of the trucks is larger than the transverse damping. Resonance occurs at the side span of the bridge under a truck at 10 km/h.

Hybrid Controller of Neural Network and Linear Regulator for Multi-trailer Systems Optimized by Genetic Algorithms

  • Endusa, Muhando;Hiroshi, Kinjo;Eiho, Uezato;Tetsuhiko, Yamamoto
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1080-1085
    • /
    • 2005
  • A hybrid control scheme is proposed for the stabilization of backward movement along simple paths for a vehicle composed of a truck and six trailers. The hybrid comprises the combination of a linear quadratic regulator (LQR) and a neurocontroller (NC) that is trained by a genetic algorithm (GA). Acting singly, either the NC or the LQR are unable to perform satisfactorily over the entire range of the operation required, but the proposed hybrid is shown to be capable of providing good overall system performance. The evaluation function of the NC in the hybrid design has been modified from the conventional type to incorporate both the squared errors and the running steps errors. The reverse movement of the trailer-truck system can be modeled as an unstable nonlinear system, with the control problem focusing on the steering angle. Achieving good backward movement is difficult because of the restraints of physical angular limitations. Due to these constraints the system is impossible to globally stabilize with standard smooth control techniques, since some initial states necessarily lead to jack-knife locks. This paper demonstrates that a hybrid of neural networks and LQR can be used effectively for the control of nonlinear dynamical systems. Results from simulated trials are reported.

  • PDF

대형 하이브리드 트럭용 열전 무시동 공조시스템 성능 연구 (Performance of Non-starting Conditioning System using Thermoelectric Modules for Hybrid Heavy Trucks)

  • 박경민
    • Tribology and Lubricants
    • /
    • 제29권5호
    • /
    • pp.310-317
    • /
    • 2013
  • To reduce vehicle fuel consumption due to not only driving but also air conditioning, battery-operated non-starting conditioning systems with thermoelectric modules and without mechanical elements like compressors are being manufactured for use by hybrid heavy trucks in the near future. In this study, the voltage and current consumed by a thermoelectric module were measured to determine the required battery power, and the performance of the conditioning system with air temperature, and humidity of the inlet/outlet modules and inside/outside the cabin for a truck, was evaluated using experimental apparatus under actual conditions. The results showed that, the thermoelectric module can be continously operated for about 1.5 h using existing 24 V batteries. The coefficent of performance(COP) of the cooling and heating modes was calculated to be an average 0.8-1.32. As expected, the heating performance was 30% more efficient than the cooling performance, which is general characteristic of thermoelectric modules.

GA 기반 퍼지 제어기의 설계 및 트럭 후진제어 (A Design of GA-based Fuzzy Controller and Truck Backer-Upper Control)

  • 곽근창;김주식;정수현
    • 전기학회논문지P
    • /
    • 제51권2호
    • /
    • pp.99-104
    • /
    • 2002
  • In this paper, we construct a hybrid intelligent controller based on a fusion scheme of GA(Genetic Algorithm) and FCM(Fuzzy C-Means) clustering-based ANFIS(Adaptive Neuro-Fuzzy Inference System). In the structure identification, a set of fuzzy rules are generated for a given criterion by FCM clustering algorithm. In the parameter identification, premise parameters are optimally searched by adaptive GA. On the other hand, consequent parameters are estimated by RLSE(Recursive Least Square Estimate) to reduce the search space. Finally, we applied the proposed method to the truck backer-upper control and obtained a better performance than previous works.

입력 공간 분할에 따른 뉴로-퍼지 시스템과 응용 (Neuro-Fuzzy System and Its Application by Input Space Partition Methods)

  • 곽근창;유정웅
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 추계학술대회 학술발표 논문집
    • /
    • pp.433-439
    • /
    • 1998
  • In this paper, we present an approach to the structure identification based on the input space partition methods and to the parameter identification by hybrid learning method in neuro-fuzzy system. The structure identification can automatically estimate the number of membership function and fuzzy rule using grid partition, tree partition, scatter partition from numerical input-output data. And then the parameter identification is carried out by the hybrid learning scheme using back-propagation and least squares estimate. Finally, we sill show its usefulness for neuro-fuzzy modeling to truck backer-upper control.

  • PDF

DNA 코딩 기반의 하이브리드 알고리즘을 이용한 Truck-Trailer Backing Problem의 퍼지 모델링 (Fuzzy Modeling of Truck-Trailer Backing Problem Using DNA Coding-Based Hybrid Algorithm)

  • 김장현;주영훈;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2314-2316
    • /
    • 2000
  • In the construction of successful fuzzy models and/or controllers for nonlinear systems, identification of a good fuzzy Neural inference system is an important yet difficult problem, which is traditionally accomplished by trial and error process. In this paper, we propose a systematic identification procedure for complex multi-input single- output nonlinear systems with DNA coding method.DNA coding method is optimization algorithm based on biological DNA as are conventional genetic algothms (GAs). We also propose a new coding method for applying the DNA coding method to the identification of fuzzy Neural models. To acquire optimal TS fuzzy model with higher accuracy and economical size, we use the DNA coding method to optimize the parameters and the number of fuzzy inference system.

  • PDF

Road-friendliness of Fuzzy Hybrid Control Strategy Based on Hardware-in-the-Loop Simulations

  • Yan, Tian Yi;Li, Qiang;Ren, Kun Ru;Wang, Yu Lin;Zhang, Lu Zou
    • Journal of Biosystems Engineering
    • /
    • 제37권3호
    • /
    • pp.148-154
    • /
    • 2012
  • Purpose: In order to improve road-friendliness of heavy vehicles, a fuzzy hybrid control strategy consisting of a hybrid control strategy and a fuzzy logic control module is proposed. The performance of the proposed strategy should be effectively evaluated using a hardware-in-the-loop (HIL) simulation model of a semi-active suspension system based on the fuzzy hybrid control strategy prior to real vehicle implementations. Methods: A hardware-in-the-loop (HIL) simulation system was synthesized by utilizing a self-developed electronic control unit (ECU), a PCI-1711 multi-functional data acquisition board as well as the previously developed quarter-car simulation model. Road-friendliness of a semi-active suspension system controlled by the proposed control strategy was simulated via the HIL system using Dynamic Load Coefficient (DLC) and Dynamic Load Stress Factor (DLSF) criteria. Results: Compared to a passive suspension, a semi-active suspension system based on the fuzzy hybrid control strategy reduced the DLC and DLSF values. Conclusions: The proposed control strategy of semi-active suspension systems can be employed to improve road-friendliness of road vehicles.

대형 상용차량 하이브리드 전동식 조향 시스템 주행 성능평가를 위한 HILS 시스템 개발 (Development of HILS System for Performance Evaluation of a Heavy Commercial Vehicle Hybrid Electric Power Steering System)

  • 유춘식;최규재
    • 한국자동차공학회논문집
    • /
    • 제25권1호
    • /
    • pp.103-110
    • /
    • 2017
  • Most commercial vehicles have adopted the hydraulic power steering system. To reduce fuel consumption and to improve steering controllability, a hybrid electric power steering system is being developed for commercial vehicles. In this study, the HILS (Hardware In the Loop Simulation) system equipped with a commercial vehicle hybrid electric power steering system was developed and the vehicle dynamic performance of a truck with the steering system was evaluated. The hybrid electric power steering system is composed of the EHPS motor pump, column mounted EPS system, and ball nut steering gear box for heavy commercial vehicles. The accuracy of vehicle models equipped with the HILS system was verified with comparisons between the simulation results and field test results. The road reaction forces of the steering system were generated from the vehicle model and verified using field test results. Step steering tests using the verified HILS system were carried out and the performance of a newly developed commercial vehicle hybrid electric power steering system was evaluated.

소형경유트럭의 하이브리드 튜닝 안전성에 관한 연구 (A Study on the Safety of Hybrid Tuning for Light-duty Diesel Trucks)

  • 전상우;권만재;안호순
    • 자동차안전학회지
    • /
    • 제13권4호
    • /
    • pp.20-25
    • /
    • 2021
  • This paper is the result of a research on hybrid tuning technology developed to improve the actual fuel efficiency and reduce emissions of in-use light-duty diesel trucks. In this study, a hybrid powertrain was constructed by inserting an electric motor between the diesel engine and manual transmission of an internal combustion engine vehicle and installing a battery. To verify the safety, a test was conducted based on the Korean tuning regulations. In particular, since there has been no case of tuning an internal combustion engine vehicle into a hybrid vehicle in Korea, it was necessary to carry out all procedures to receive tuning approval. The approval process consists of a technical review, safety verification test, and application for tuning approval. As a result, the test vehicle was approved for tuning because both the technical review and vehicle test results were suitable. Therefore, this study confirmed the safety of diesel hybrid tuning technology, and laid the foundation for the research and development of technologies to tune into an eco-friendly vehicle as well as the activation of related industries.