• Title/Summary/Keyword: Hybrid System Simulation

Search Result 918, Processing Time 0.025 seconds

Proposal of a Novel Plug-in-hybrid Power System Based on Analysis of PHEV System (PHEV 시스템의 분석을 통한 신 PHEV 동력 시스템 제안)

  • Kim, Jinseong;Park, Yeongil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.4
    • /
    • pp.436-443
    • /
    • 2015
  • In order to develop the PHEV(plug-in hybrid electric vehicle), the specific power transmission systems considering the PHEV system characteristics should be applied. A PHEV applied to series-parallel type hybrid power transmission system is a typical example. In this paper, the novel hybrid power systems are proposed by analyzing the existing PHEV system. The backward simulation program is developed to analyze the fuel efficiency of hybrid power system. Quasi-static models for each components such as engine, motor, battery and vehicle are included in the developed simulation program. To obtain an optimal condition for hybrid systems, an optimization approach called the dynamic programming is applied. The simulation is performed in various driving cycles. A weakness for the existing system is found through the simulation. To compensate for a discovered weakness, novel hybrid power systems are proposed by adding or moving the clutch to the existing system. Comparing the simulation results for each systems, the improved fuel efficiency for proposed systems are verified.

Hybrid Systems Modeling and Simulation - PartI: Modeling and Simulation Methodology (하이브리드 시스템 모델링 및 시뮬레이션 - 제1부: 모델링 및 시뮬레이션 방법론)

  • 임성용;김탁곤
    • Journal of the Korea Society for Simulation
    • /
    • v.10 no.3
    • /
    • pp.1-14
    • /
    • 2001
  • A hybrid system is defined as a mixture of continuous systems and discrete event systems. This paper first proposes a framework for hybrid systems modeling, called Hybrid Discrete Event System Specification (HDEVS) formalism. It then presents a method for simulators interoperation in which a continuous system simulator and a discrete event simulator are executed together in a cooperative manner. The formalism can specify a hybrid system in a way that a continuos system and a discrete event system are separately modeled by their own specification formalisms with a support of well-defined interface. We call such interface an A/E converter for analog-to- event conversion and an E/A converter for event-to-analog conversion. Simulators interoperation is based on the concept of pre-simulation in which simulation time for a continuous simulator is advanced in accordance with a discrete event simulator.

  • PDF

Enabling role of hybrid simulation across NEES in advancing earthquake engineering

  • Gomez, Daniel;Dyke, Shirley J.;Maghareh, Amin
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.913-929
    • /
    • 2015
  • Hybrid simulation is increasingly being recognized as a powerful technique for laboratory testing. It offers the opportunity for global system evaluation of civil infrastructure systems subject to extreme dynamic loading, often with a significant reduction in time and cost. In this approach, a reference structure/system is partitioned into two or more substructures. The portion of the structural system designated as 'physical' or 'experimental' is tested in the laboratory, while other portions are replaced with a computational model. Many researchers have quite effectively used hybrid simulation (HS) and real-time hybrid simulation (RTHS) methods for examination and verification of existing and new design concepts and proposed structural systems or devices. This paper provides a detailed perspective of the enabling role that HS and RTHS methods have played in advancing the practice of earthquake engineering. Herein, our focus is on investigations related to earthquake engineering, those with CURATED data available in their entirety in the NEES Data Repository.

Verification of Real-time Hybrid Test System using RC Pier Model (RC교각을 이용한 실시간 하이브리드 실험 시스템의 적용성 연구)

  • Lee, Jinhaeng;Park, Minseok;Chae, Yunbyeong;Kim, Chul-Young
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.253-259
    • /
    • 2018
  • Structure behaviors resulting from an earthquake are experimentally simulated mainly through a shaking table test. As for large-scale structures, however, size effects over a miniature may make it difficult to assess actual behaviors properly. To address this problem, research on the hybrid simulation is being conducted actively. This method is to implement numerical analysis on framework members that affect the general behavior of the structure dominantly through an actual scale experiment and on the rest parts by applying the substructuring technique. However, existing studies on hybrid simulation focus mainly on Slow experimental methods, which are disadvantageous in that it is unable to assess behaviors close to the actual level if material properties change depending on the speed or the influence of inertial force is significant. The present study aims to establish a Real-time hybrid simulation system capable of excitation based on the actual time history and to verify its performance and applicability. The hybrid simulation system built up in this study utilizes the ATS Compensator system, CR integrator, etc. in order to make the target displacement the same with the measured displacement on the basis of MATLAB/Simulink. The target structure was a 2-span bridge and an RC pier to support it was produced as an experimental model in order for the shaking table test and Slow and Real-time hybrid simulations. Behaviors that result from the earthquake of El Centro were examined, and the results were analyzed comparatively. In comparison with the results of the shaking table test, the Real-time hybrid simulation produced more similar maximum displacement and vibration behaviors than the Slow hybrid simulation. Hence, it is thought that the Real-time hybrid simulation proposed in this study can be utilized usefully in seismic capacity assessment of structural systems such as RC pier that are highly non-linear and time-dependent.

Ensuring Sound Numerical Simulation of Hybrid Automata

  • Hur, Yerang;Sim, Jae-Hwan;Kim, Je-Sung;Chai, Jin-Young
    • Journal of Computing Science and Engineering
    • /
    • v.3 no.2
    • /
    • pp.73-87
    • /
    • 2009
  • A hybrid system is a dynamical system in which states can be changed continuously and discretely. Simulation based on numerical methods is the widely used technique for analyzing complicated hybrid systems. Numerical simulation of hybrid systems, however, is subject to two types of numerical errors: truncation error and round-off error. The effect of such errors can make an impossible transition step to become possible during simulation, and thus, to generate a simulation behavior that is not allowed by the model. The possibility of an incorrect simulation behavior reduces con.dence in simulation-based analysis since it is impossible to know whether a particular simulation trace is allowed by the model or not. To address this problem, we define the notion of Instrumented Hybrid Automata (IHA), which considers the effect of accumulated numerical errors on discrete transition steps. We then show how to convert Hybrid Automata (HA) to IRA and prove that every simulation behavior of IHA preserves the discrete transition steps of some behavior in HA; that is, simulation of IHA is sound with respect to HA.

Power Control modeling and Simulation of Hybrid Power System for Building Microgrid Connected Application

  • Yoon, Gi-Cap;Cho, Jae-Hoon;Hong, Won-Pyo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.11
    • /
    • pp.84-93
    • /
    • 2009
  • In this paper, we propose to study the possibility of using a photovoltaic system combined with a high speed micro-turbine. This hybrid system can work as stand-alone system or grid connected system as it will be a part of a micro-grid. Initially, we propose Matlab/Simulink dynamic models of photovoltaic, micro turbine systems and supercapacitor. Then, we carry out a simulation comparison of the two systems, this is, with supercapacitor and without supercapacitor bank. We show that supercapacitor bank as short-term storage device was necessary to reduce the fast fluctuation of power in the case of sensitive loads. It is verified the simulation results of Matlab/Simulink based hybrid power system represent the effectiveness of the suggested hybrid power system.

An Implementation of Hybrid-Simulation in Manufacturing Environments using Object-Oriented Methodology (객체지향 기법을 이용한 공장운용 환경 하에서의 혼합시뮬레이션 구현)

  • 김성식
    • Journal of the Korea Society for Simulation
    • /
    • v.7 no.1
    • /
    • pp.15-26
    • /
    • 1998
  • In building a shell-based FMS, which is known as one of the top-down approaches in the field of factory automation, we may take a hybrid simulation into consideration. The modeling of a hybrid simulation consists of real physical entities, virtual simulation, and central clock algorithm, etc. to carry out the whole system operation. In this paper, we sow a way to construct a hybrid simulation software system in manufacturing environments. We bring in the object-oriented methodology in system design and it can contribute in dealing with a wide variety of production types and configurations. Some classes such as project, product, process, order, schedule, stage are defined. These are used and tested by implementing a specific LSI circuit assembly line process.

  • PDF

Accuracy of Hybrid Navigation System Combining Dead Reckoning and Loran C (추측항법과 Loran C항법을 결합한 Hybrid 항법의 정도)

  • Lee, Won-Woo;Sin, Hyeong-Il
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.20 no.2
    • /
    • pp.105-111
    • /
    • 1984
  • Recently, Hybrid Navigation Systems combining Omega, NNSS, Loran C and Dead reckoning etc. served to give us highly accurate ship's position, and a number of ships are equipped with these navigation systems. In order to evaluate for the accuracy of this navigation system observations of Loran C, 5970 and 9970 chains and Radar at the same time were made on board m.s Jeonbuk 401 and 403 training ships of Gunsan Fisheries Collage at nine stations in the yellow sea from July, 1982 to June, 1983, and then were done by the Hybrid Navigation System combining Dead reckoning and Loran C at the same areas. The authors investigated the accuracy of the Hybrid Navigation System based on measurements of the relative positional error which is defined as the difference between the position fixed by this system or the Loran C system, and the one by the Radar. The obtained results are as follows; 1. The mean standard deviation of the time difference of Loran C were about 0.21$\mu$s in 9970 chain and about 0.06$\mu$s in 5970 chain, and the fluctuation of the time difference of Loran C in 5970 chain was smaller than that in 9970 chain. 2. The positional error between two positions by Radar and the Hybrid Navigation System in 9970 chain was about 0.4 miles, and between two positions by Radar and Loran C was about 0.51 miles. The Hybrid Navigation System was therefore more accurate than Loran C System. 3. The positional error between two positions by Radar and Hybrid Navigation System in 5970 chain was about 0.4 miles, and between two positions by Radar and computer simulation of Loran C was about 0.98 miles. Consequently, Hybrid Navigation System was more accurate than computer simulation of Loran C system.

  • PDF

Development of HILS System for Performance Evaluation of a Heavy Commercial Vehicle Hybrid Electric Power Steering System (대형 상용차량 하이브리드 전동식 조향 시스템 주행 성능평가를 위한 HILS 시스템 개발)

  • Yoo, Chunsik;Choi, Gyoojae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.1
    • /
    • pp.103-110
    • /
    • 2017
  • Most commercial vehicles have adopted the hydraulic power steering system. To reduce fuel consumption and to improve steering controllability, a hybrid electric power steering system is being developed for commercial vehicles. In this study, the HILS (Hardware In the Loop Simulation) system equipped with a commercial vehicle hybrid electric power steering system was developed and the vehicle dynamic performance of a truck with the steering system was evaluated. The hybrid electric power steering system is composed of the EHPS motor pump, column mounted EPS system, and ball nut steering gear box for heavy commercial vehicles. The accuracy of vehicle models equipped with the HILS system was verified with comparisons between the simulation results and field test results. The road reaction forces of the steering system were generated from the vehicle model and verified using field test results. Step steering tests using the verified HILS system were carried out and the performance of a newly developed commercial vehicle hybrid electric power steering system was evaluated.

A Study on Structuring the Hybrid Production System of MRP, JIT and OPT (MRP, JIT그리고 OPT의 Hybrid생산시스템 구현에 관한 연구)

  • 조성훈;안동규;임명준
    • Journal of the Korea Society of Computer and Information
    • /
    • v.4 no.1
    • /
    • pp.54-61
    • /
    • 1999
  • The MRP, OPT and JIT systems have the respective limitations to become the suitable production management systems of the future. Therefore it is highly requested to develop an integrated production management system by the hybridization of those production systems. Accordingly, this study has focused its hybrid model using MRP, JIT and OPT. There has been many efforts in comparing and analyzing the usefulness and the limitations of those production systems and applying the usefulness to the maximum which improving and supplementing the weakpoints of respective systems. In this respect, this study develop the hybrid simulation model, and this hybrid model are evaluated and compared with MRP(Push system) and JIT(Pull system) by using a simulation.

  • PDF