Browse > Article
http://dx.doi.org/10.12989/sss.2015.15.3.913

Enabling role of hybrid simulation across NEES in advancing earthquake engineering  

Gomez, Daniel (Lyles School of Civil Engineering, Purdue University)
Dyke, Shirley J. (Lyles School of Civil Engineering, Purdue University)
Maghareh, Amin (Lyles School of Civil Engineering, Purdue University)
Publication Information
Smart Structures and Systems / v.15, no.3, 2015 , pp. 913-929 More about this Journal
Abstract
Hybrid simulation is increasingly being recognized as a powerful technique for laboratory testing. It offers the opportunity for global system evaluation of civil infrastructure systems subject to extreme dynamic loading, often with a significant reduction in time and cost. In this approach, a reference structure/system is partitioned into two or more substructures. The portion of the structural system designated as 'physical' or 'experimental' is tested in the laboratory, while other portions are replaced with a computational model. Many researchers have quite effectively used hybrid simulation (HS) and real-time hybrid simulation (RTHS) methods for examination and verification of existing and new design concepts and proposed structural systems or devices. This paper provides a detailed perspective of the enabling role that HS and RTHS methods have played in advancing the practice of earthquake engineering. Herein, our focus is on investigations related to earthquake engineering, those with CURATED data available in their entirety in the NEES Data Repository.
Keywords
earthquake engineering; seismic experimentation; hybrid simulation; real-time hybrid simulation; design guidelines; building code;
Citations & Related Records
연도 인용수 순위
  • Reference
1 AASHTO (1995), Standard specifications for highway bridges, division I-A: seismic design american association of state highway and transportation officials, Inc., 15th Ed., as amended by the Interim Specification - Bridges, Washington, DC.
2 ACI Committee, American Concrete Institute and International Organization for Standardization (2008), Building code requirements for structural concrete and commentary (ACI 318-08), Farmington Hills, MI.
3 American Institute of Steel Construction AISC(2010),Seismic provisions for structural steel buildings, Chicago, IL.
4 Arendt, L.A., Earle, S. and Meyers, R. (2010), "Results of a cross-disciplinary survey on isolation systems decision making", Proceedings of the 9th U.S. Natl. and 10th Canadian Conf. on Eq. Eng, Toronto, Canada, July.
5 Chen, C., Ricles, J.M., Karavasilis, T.L., Chae, Y. and Sause, R. (2012), "Evaluation of a real-time hybrid simulation system for performance evaluation of structures with rate dependent devices subjected to seismic loading", Eng. Struct., 35, 71-82.   DOI
6 Christenson, R., Dyke, S.J., Zhang, J., Mosqueda, G., Chen, C., Nakata, N., Laplace, P., Song, W., Chae, Y., Marshall, G., Ou, G., Song, C. and Riascos, C.A. (2014), Hybrid simulation: a discussion of current assessment measures, https://nees.org/resources/12876.
7 Deierlein, G.G., Billington, S. and Hajjar, J.F. (2005), Controlled rocking of steel-framed buildings, April 24, 2014. https://nees.org/warehouse/project/75
8 Deierlein, G., Arduino, P., Assimaki, D., Caicedo, J.M., Dyke, S.J., Hachem, M.M., Irfanoglu, A., McKenna, F., Lynett P., Lowes, L.N., Mejia, L. Mazzoni, S., Mosqueda, G., Nakata, N., Zhang, J. and Rodgers, G.P. (2011), NEES Vision Report on Computational and Hybrid Simulation, NEEScomm Simulation Steering Committee,April 24, 2014. http://nees.org/resources/3834.
9 Dong, B., Sause, R., Ricles, J., Ahn, R., Chae, Y., Marullo, T. and Novak, G. (2014), "Real-time Hybrid Simulation of a large-scale steel structure with Viscous Dampers-Phase 2", Network for Earthquake Engineering Simulation (distributor), Dataset, DOI:10.4231/D3GH9B894   DOI
10 Elkhoraibi, T. and Mosalam, K.M. (2007), Generalized hybrid simulation framework for structural systems subjected to seismic loading, PEER report 101, University of California, Berkeley.
11 Eatherton, M., Hajjar, J.F., Deierlein, G.G., Ma, X. and Krawinkler, H. (2010), "Hybrid simulation testing of a controlled rocking steel braced frame system", Proceedings of the 9th U.S. National and 10th Canadian Conf. on Earthquake Eng, Toronto, Canada, July.
12 Friedman, A., Phillips, B., Ahn, R., Chae, Y., Zhang, J., Cha, Y., Dyke, S.J., Ricles, J., Spencer, B., Christenson, R. and Sause, R. (2013), "RTHS (Frame + Damper) - 3StoryPS - Single MR Damper (Floor 1)", Network for Earthquake Engineering Simulation (distributor), Dataset, DOI:10.4231/D3G15TB42   DOI
13 Hakuno, M., Shidawara, M. and Hara, T. (1969), "Dynamic destructive test of a cantilever beam controlled by an analog-computer", T. Japan Soc. Civil Eng., 171, 1-9. (in Japanese).
14 Friedman, A., Dyke, S.J., Phillips, B., Ahn, R., Dong, B., Chae, Y., Castaneda, N., Jiang, Z., Zhang, J., Cha, Y., Ozdagli, A.I., Spencer, B.F., Ricles, J., Christenson, R., Agrawal, A. and Sause, R. (2014), "Large-scale real-time hybrid simulation for evaluation of advanced damping system performance", J. Struct. Eng. - ASCE, 10.1061/(ASCE)ST.1943-541X.0001093 , 04014150.   DOI
15 Gomez, D., Dyke, S.J, and Maghareh, A. (2014), Enabling role of hybrid simulation within the NEES network in advancing earthquake engineering practice and research, Intelligent Infrastructure Systems Lab Technical Report IISL-008. Purdue University, August. https://nees.org/resources/13496
16 Hacker, T.J., Eignenmann, R., and Rathje, E. (2013), "Advancing earthquake engineering research through cyberinfrastructure", J. Struct. Eng. - ASCE, 139(7), 1099-1111.   DOI
17 Halbert, P.W., Landauer, J.P. and Witsenhausen, H.S. (1963), "Hybrid simulation of adapt path control", Proceedings of the AIAA Simulation for Aerospace Flight Conference, Columbus, Ohio, USA, August.
18 Hashemi, A. and Mosalam, K.M. (2006), "Shake-table experiment on reinforced concrete structure containing masonry infill wall", Earthq. Eng. Struct. D., 35(14), 1827-1852.   DOI
19 Hashemi, M.J. and Mosqueda, G. (2014a), "Innovative substructuring technique for hybrid simulation of multistory buildings through collapse", Earthq. Eng. Struct. D., 43(14), 2059-2074.   DOI
20 Hashemi, M.J. and Mosqueda, G. (2014b), "Hybrid simulation of 4 story frame to collapse using 1.5 story substructure", Network for Earthquake Engineering Simulation (distributor), Dataset, DOI:10.4231/D3F18SG1T   DOI
21 Lignos, D. (2008), Sidesway collapse of deteriorating structural systems under seismic excitations, Ph.D. Dissertation, Stanford University, California.
22 Heartz, R.A. and Jones, T.H. (1964), "Hybrid simulation of space vehicle guidance system", Proceedings of the International Space Electronics Symposium, Las Vegas, Nevada, USA, October.
23 Kim, S.J., Holub, C.J. and Elnashai, A.S. (2011), "Experimental investigation of the behavior of RC bridge piers subjected to horizontal and vertical earthquake motion", Eng. Struct., 33(7), 2221-2235.   DOI
24 Li, J., Spencer, B.F. and Elnashai, A.S. (2013), "Bayesian updating of fragility functions using hybrid simulation", J. Struct. Eng. - ASCE, 139(7), 1160-1171.   DOI
25 Lignos, D., Moreno, D. and Billington, S. (2014), "Seismic retrofit of steel moment-resisting frames with high-performance fiber-reinforced concrete infill panels: large-scale hybrid simulation experiments", J. Struct. Eng. - ASCE, 140(3), 04013072.   DOI
26 Lin, P.C., Tsai1, K.C., Wang, K.J., Yu, Y.J, Wei, C.Y., Wu, A.C., Tsai, C.Y., Lin, C.H., Chen, J.C., Schellenberg, A.H., Mahin, S.A. and Roeder, C.W. (2012), "Seismic design and hybrid tests of a full-scale three-story buckling-restrained braced frame using welded end connections and thin profile", Earthq. Eng. Struct. D., 41(5), 1001-1020.   DOI
27 Lin, S.L., Li, J., Elnashai, A.S. and Spencer, B.F. (2012), "NEES integrated seismic risk assessment framework (NISRAF)", Soil Dyn. Earthq. Eng., 42, 219-228.   DOI
28 Lin, Y., Sause, R. and Ricles, J. (2013), "Seismic performance of steel self-centering, moment-resisting frame: hybrid simulations under design basis earthquake", J. Struct. Eng. - ASCE, 139(11), 1823-1832.   DOI
29 Mahin, S.A., Shing, P.B., Thewalt, C.R. and Hanson, R.D. (1989), "Pseudodynamic test method current status and future directions", J. Struct. Eng. - ASCE, 115(8), 2113-2128.   DOI
30 Leon, R., Yang, C., DesRochers, R., Reinhorn, A., Schacter, M., Stojadinovic, B., Yang, T., Shing, B. and Wei, Z. (2005), "Results of early collaborative research on behavior of braced steel frames with innovative bracing schemes (Zipper Frames)", Proceedings of the 1st International Conference on Advances in Experimental Structural Engineering, AESE, Nagoya, Japan.
31 Mahvashmohammadi, A., Sause, R., Ricles, J. and Marullo, T. (2013), Real-time hybrid simulations on a large-scale steel MRF building with elastomeric dampers, ATLSS Center, Department of Civil and Environmental Engineering, Lehigh University, Bethlehem, Pennsylvania. (Report)
32 Nakashima, M., Kato, H. and Takaoka, E. (1992), "Development of real-time pseudo dynamic testing", Earthq. Eng. Struct. D., 21(1), 79-92.   DOI
33 Nakata, N., Dyke, S.J., Zhang, J., Mosqueda, G., Shao, X., Mahmoud, H., Head, M.H., Bletzinger, M. Marshall, G.A., Ou, G. and Song, C. (2014), "Hybrid Simulation Primer and Dictionary", https://nees.org/resources/7702.
34 Open Sees (2006), "Open System for Earthquake Engineering Simulation", http://opensees.berkeley.edu
35 Pejsa, S., Dyke, S.J. and Hacker, T. (2014), "Building infrastructure for preservation and publication of earthquake engineering research data", Int. J. Data Curation, 9(2), 83-97.
36 Phillips, B M., Chae, Y., Jiang, Z., Spencer, B.F., Ricles, J.M., Christenson, R.E., Dyke, S.J, and Agrawal, A. (2010), "Real-time hybrid simulation benchmark study with a large-scale MR damper", Proceedings of the 5th World Conference on Structural Control and Monitoring, Shinjuku, Tokio, July.
37 Shao, X. and Griffith, C. (2013), "An overview of hybrid simulation implementations in NEES projects", Eng. Struct., 56, 1439-1451.   DOI
38 Ramirez, J. (2012). "The George E. Brown Jr., Network for Earthquake Engineering Simulation (NEES): Reducing the Impact of EQs and Tsunamis", Proceedings of the 15 World Conf. in Earthquake Engineering, Lisbon, Portugal, September.
39 Ryan, K., Sato, E., Sasaki, T., Okazaki, T., Guzman, J., Dao, N., Soroushian, S. and Coria, C. (2013), "Full Scale 5-story Building with LRB/CLB Isolation System at E-Defense", Network for Earthquake Engineering Simulation (distributor), Dataset, DOI:10.4231/D3SB3WZ43   DOI
40 Schellenberg, A. and Mahin, S. (2006), "Integration of hybrid simulation within the general-purpose computational framework Open Sees", Proceedings of the 100th Anniversary Earthquake Conference, San Francisco, California, April.
41 Shing, P.B., Nakashima, M. and Bursi, O.S. (1996), "Application of pseudo dynamic test method to structural research", Earthq. Spectra, 12(1), 29-56.   DOI
42 Takanashi, K, and Nakashima, M. (1987), "Japanese activities on on-line Testing", J. Eng. Mech. - ASCE, 113(7), 1014-1032.   DOI
43 Takanashi, K., Udagawa, K., Seki, M., Okada, T. and Tanaka, H. (1975), "Non-linear earthquake response analysis of structures by a computer-actuator on-line system", Transactions of the Architectural Institute of Japan, May.
44 Tsai, C.Y., Tsai, K.C., Lin, P.C., Ao, W.H., Roeder, C.W., Mahin, S.A., Lin, C.H., Yu, Y.J., Wang, K.J., Wu, A.C., Chen, J.C. and Lin, T.H. (2013), "Seismic design and hybrid tests of a full-scale three-story concentrically braced frame using in-plane buckling braces", Earthq. Spectra, 29(3), 1043-1067.   DOI
45 Yang, T.Y., Stojadinovic, B. and Moehle, J. (2009), "Hybrid simulation of a zipper-braced steel frame under earthquake excitation", Earthq. Eng. Struct. D., 38, 95-113.   DOI
46 Whyte, C.A, Barthes, C., Gunay, S., Park, S., Patterson, D., Takhirov, S. and Stojadinovic B. (2013), "Hybrid simulation of the seismic response of squat reinforced concrete walls - Wall 1 Test", Network for Earthquake Engineering Simulation (distributor), Dataset, DOI:10.4231/D34T6F32M   DOI
47 Whyte C.A. and Stojadinovic, B. (2012), "Hybrid simulation of the seismic response of squat reinforced concrete shear walls", Proceedings of the 15 World Conf. in Earthquake Engineering, Lisbon, Portugal, September.
48 Witsenhausen, H.S. (1964), "Development of a program for the hybrid simulation of a tubular reactor", Annales de l'Association internacionale pour le calculana logique, 2, 112-117.