• Title/Summary/Keyword: Hybrid Storage

Search Result 507, Processing Time 0.025 seconds

Hybrid Energy Storage System with Emergency Power Function of Standardization Technology (비상전원 기능을 갖는 하이브리드 에너지저장시스템 표준화 기술)

  • Hong, Kyungjin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.2
    • /
    • pp.187-192
    • /
    • 2019
  • Hybrid power storage system with emergency power function for demand management and power outage minimizes the investment cost in the building of buildings and factories requiring emergency power generation facilities, We propose a new business model by developing technology that can secure economical efficiency by reducing power cost at all times. Normally, system power is supplied to load through STS (Static Transfer Switch), and PCS is connected to system in parallel to perform demand management. In order to efficiently operate the electric power through demand forecasting, the EMS issues a charge / discharge command to the ESS as a PMS (Power Management System), and the PMS transmits the command to the PCS controller to operate the system. During the power outage, the STS is rapidly disengaged from the system, and the PCS becomes an independent power supply and can supply constant voltage / constant frequency power to the load side. Therefore, it is possible to secure reliability through verification of actual system linkage and independent operation performance of hybrid ESS, By enabling low-carbon green growth technology to operate in conjunction with an efficient grid, it is possible to improve irregular power quality and contribute to peak load by generating renewable energy through ESS linkage. In addition, the ESS is replacing the frequency follow-up reserve, which is currently under the charge of coal-fired power generation, and thus it is anticipated that the operation cost of the LNG generator with high fuel cost can be reduced.

Optimization Process Models of CHP and Renewable Energy Hybrid Systems in CES (구역전기 사업시 CHP와 신재생에너지 하이브리드 시스템의 최적공정 모델)

  • Lee, Seung Jun;Kim, Lae Hyun
    • Journal of Energy Engineering
    • /
    • v.26 no.2
    • /
    • pp.99-120
    • /
    • 2017
  • In SS branch of Korea District Heating Corporation, Combined Heat & Power power plant with 99MW capacity and 98Gcal / h capacity is operated as a district electricity business. In this region, it is difficult to operate the generator due to the problem of surplus heat treatment between June and September due to the economic recession and the decrease in demand, so it is urgent to develop an economical energy new business model. In this study, we will develop an optimized operation model by introducing a renewable energy hybrid system based on actual operation data of this site. In particular, among renewable energy sources, fuel cell (Fuel Cell) power generation which can generate heat and electricity at the same time with limited location constraints, photovoltaic power generation which is representative renewable energy, ESS (Energy Storage System). HOMER (Hybrid Optimization of Multiple Energy Resources) program was used to select the optimal model. As a result of the economic analysis, 99MW CHP combined cycle power generation is the most economical in terms of net present cost (NPC), but 99MW CHP in terms of carbon emission trading and renewable energy certificate And 5MW fuel cells, and 521kW of solar power to supply electricity and heat than the supply of electricity and heat by 99MW CHP cogeneration power, it was shown that it is economically up to 247.5 billion won. we confirmed the results of the improvement of the zone electricity business condition by introducing the fuel cell and the renewable energy hybrid system as the optimization process model.

A Study on Power Management Strategy for Multi-Power Source Fuel Cell Hybrid Armored Vehicle (다중 동력 연료전지 하이브리드 장갑차량의 동력관리 전략에 관한 연구)

  • An Sang-Jun;Kim Tae-Jin;Lee Kyo Il
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.361-365
    • /
    • 2005
  • Since the fuel cell uses the hydrogen for its fuel. it has no emission and higher efficiency than an internal combustion engine. Also fuel cell is much quieter than engine generator and generates heat much less than engine generator. So it has advantage of Army's 'si lent watch' capability and the ability to operate undetected by the enemy. The fuel cell hybrid system combines a fuel cell power system with an ESS. The ESS (e.g., batteries or ultracapacitors) reduces the fuel cell's peak power and transient response requirements. It allows the fuel cell to operate more efficiently and recovery of vehicle energy during deceleration. The battery has high energy density, so it has the advantage regarding driving distance. However, it has a disadvantage considering dynamic characteristic because of low power density. One other hand. the ultracapacitor has higher power density, so it can handle sudden change or discharge of required power. Yet. it has lower energy density. so it will be bigger and heavier than the battery when it has the same energy. This paper proposes the power management strategy for multi-power source fuel cell hybrid system. which is applied with the merits of both battery and ultra capacitor by using both of them simultaneous.

  • PDF

EXPLORING THE FUEL ECONOMY POTENTIAL OF ISG HYBRID ELECTRIC VEHICLES THROUGH DYNAMIC PROGRAMMING

  • Ao, G.Q.;Qiang, J.X.;Zhong, H.;Yang, L.;Zhuo, B.
    • International Journal of Automotive Technology
    • /
    • v.8 no.6
    • /
    • pp.781-790
    • /
    • 2007
  • Hybrid electric vehicles(HEV) combined with more than one power sources have great potential to improve fuel economy and reduce pollutant emissions. The Integrated Starter Generator(ISG) HEV researched in this paper is a two energy sources vehicle, with a conventional internal combustion engine(ICE) and an energy storage system(batteries). In order to investigate the potential of diesel engine hybrid electric vehicles in fuel economy improvement and emissions reduction, a Dynamic Programming(DP) based supervisory controller is developed to allocate the power requirement between ICE and batteries with the objective of minimizing a weighted cost function over given drive cycles. A fuel-economy-only case and a fuel & emissions case can be achieved by changing specific weighting factors. The simulation results of the fuel-economy-only case show that there is a 45.1% fuel saving potential for this ISG HEV compared to a conventional transit bus. The test results present a 39.6% improvement in fuel economy which validates the simulation results. Compared to the fuel-economy-only case, the fuel & emissions case further reduces the pollutant emissions at a cost of 3.2% and 4.5% of fuel consumption with respect to the simulation and test result respectively.

Study on Heating Performance of Hybrid Heat Pump System Using Geothermal Source and Solar Heat for Protected Horticulture (시설원예용 지열 및 태양열 이용 하이브리드 히트펌프 시스템의 난방성능에 관한 연구)

  • Jeon, Jong Gil;Lee, Dong Geon;Paek, Yee;Kim, Hyung Gweon
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.5
    • /
    • pp.49-56
    • /
    • 2015
  • In this study a hybrid heating system based on geothermal source and solar heat was developed in order to save energy for greenhouse heating and its field performance was evaluated. Developed system are composed of following parts: water tank, heat exchanger, heat pump, fan coil unit and heat storage unit. The working performance test was carried out in a greenhouse cultivating oriental orchids being managed by $23^{\circ}C$. Field performance test results showed that average heating coefficient of performance ($COP_h$) was 3.4 for the period from mid-January to mid-March 2013. Heating coefficient of performance ($COP_h$) of developed hybrid heat pump system was more sensitive to water tank temperature than outside air temperature. This study showed that developed hybrid heat pump system has a potential to save the heating costs up to 91% compared to conventional agricultural oil heaters.

Fuzzy Logic Based Energy Management For Wind Turbine, Photo Voltaic And Diesel Hybrid System

  • Talha, Muhammad;Asghar, Furqan;Kim, Sung Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.5
    • /
    • pp.351-360
    • /
    • 2016
  • Rapid population growth with high living standards and high electronics use for personal comfort has raised the electricity demand exponentially. To fulfill this elevated demand, conventional energy sources are shifting towards low production cost and long term usable alternative energy sources. Hybrid renewable energy systems (HRES) are becoming popular as stand-alone power systems for providing electricity in remote areas due to advancement in renewable energy technologies and subsequent rise in prices of petroleum products. Wind and solar power are considered feasible replacement to fossil fuels as the prediction of the fuel shortage in the near future, forced all operators involved in energy production to explore this new and clean source of power. Presented paper proposes fuzzy logic based Energy Management System (EMS) for Wind Turbine (WT), Photo Voltaic (PV) and Diesel Generator (DG) hybrid micro-grid configuration. Battery backup system is introduced for worst environmental conditions or high load demands. Dump load along with dump load controller is implemented for over voltage and over speed protection. Fuzzy logic based supervisory control system performs the power flow control between different scenarios such as battery charging, battery backup, dump load activation and DG backup in most intellectual way.

Fault Detection Algorithm of Hybrid electric vehicle using SVDD (SVDD 기법을 이용한 하이브리드 전기자동차의 고장검출 알고리즘)

  • Na, Sang-Gun;Jeon, Jong-Hyun;Han, In-Jae;Heo, Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.224-229
    • /
    • 2011
  • In this paper, in order to improve safety of hybrid electric vehicle a fault detection algorithm is introduced. The proposed algorithm uses SVDD techniques. Two methods for learning a lot of data are used in this technique. One method is to learn the data incrementally. Another method is to remove the data that does not affect the next learning. Using lines connecting support vectors selection of removing data is made. Using this method, lot of computation time and storage can be saved while learning many data. A battery data of commercial hybrid electrical vehicle is used in this study. In the study fault boundary via SVDD is described and relevant algorithm for virtual fault data is verified. It takes some time to generate fault boundary, nevertheless once the boundary is given, fault diagnosis can be conducted in real time basis.

  • PDF

Fabrication of ZnO Nanorod/polystyrene Nanosphere Hybrid Nanostructures by Hydrothermal Method for Energy Generation Applications (에너지 발생소자응용을 위한 수열합성법기반 ZnO 나노로드/Polystylene 하이브리드 나노구조 제조)

  • Baek, Seong-Ho;Park, Il-Kyu
    • Journal of Powder Materials
    • /
    • v.22 no.6
    • /
    • pp.391-395
    • /
    • 2015
  • We report on the successful fabrication of ZnO nanorod (NR)/polystyrene (PS) nanosphere hybrid nanostructure by combining drop coating and hydrothermal methods. Especially, by adopting an atomic layer deposition method for seed layer formation, very uniform ZnO NR structure is grown on the complicated PS surfaces. By using zinc nitrate hexahydrate $[Zn(NO_3)_2{\cdot}6H_2O]$ and hexamine $[(CH_2)_6N_4]$ as sources for Zn and O in hydrothermal process, hexagonal shaped single crystal ZnO NRs are synthesized without dissolution of PS in hydrothermal solution. X-ray diffraction results show that the ZnO NRs are grown along c-axis with single crystalline structure and there is no trace of impurities or unintentionally formed intermetallic compounds. Photoluminescence spectrum measured at room temperature for the ZnO NRs on flat Si and PS show typical two emission bands, which are corresponding to the band-edge and deep level emissions in ZnO crystal. Based on these structural and optical investigations, we confirm that the ZnO NRs can be grown well even on the complicated PS surface morphology to form the chestnut-shaped hybrid nanostructures for the energy generation and storage applications.

Preparation of Organic Dye-Inorganic Silica Hybrid Pigment and It's Application for Inkjet Dispersion Ink (유기 염료-무기 실리카 하이브리드 안료의 제조와 분산잉크로서 응용)

  • Jeon, Young-Min;Kim, Jong-Gyu;Gong, Myoung-Seon
    • Korean Journal of Materials Research
    • /
    • v.16 no.7
    • /
    • pp.422-429
    • /
    • 2006
  • Studies were performed on preparation of organic-inorganic hybrid silica dye in a dispersing ink system. The silica was subjected to surface modification using 3-aminopropyltrimethoxysilane (APTMS) in order to promote the chemical reactivity of the raw silica. On the surfaces of the aminosilane-functionalised silica, red vinylsulfone-containing azo dye was adsorbed. The dye was found to have chemically reacted with the aminosilane-grafted silica surface, which was proven by FT-IR spectra. Studies on morphology and microstructure were performed employing scanning electron microscopy. The SEM micrographs and particle size distributions showed that a homogeneous pigment can be obtained employing silica as a core. Particle size distribution was also examined using the technique of dynamic light scattering. The ensuing pigment was subjected to various physicochemical evaluation such as inkjet property, storage stability, color change as inkjet ink using printer, spectrophotometric, microscopic techniques. Studies on hybrid dyes from the silica surface demonstrated that, in general, stable pigments for inkjet dispersion ink were obtained.

WAP-LRU: Write Pattern Analysis Based Hybrid Disk Buffer Management in Flash Storage Systems (WAP-LRU : 플래시 스토리지 시스템에서 쓰기 패턴 분석 기반의 하이브리드 디스크 버퍼 관리 기법)

  • Kim, Kyung Min;Choi, Jun-Hyeong;Kwak, Jong Wook
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.3
    • /
    • pp.151-160
    • /
    • 2018
  • NAND flash memories have the advantages of fast access speed, high density and low power consumption, thus they have increasing demand in embedded system and mobile environment. Despite the low power and fast speed gains of NAND flash memory, DRAM disk buffers were used because of the performance load and limited durability of NAND flash cell. However, DRAM disk buffers are not suitable for limited energy environments due to their high static energy consumption. In this paper, we propose WAP-LRU (Write pattern Analysis based Placement by LRU) hybrid disk buffer management policy. Our policy designates the buffer location in the hybrid memory by analyzing write pattern of the workloads to check the continuity of the page operations. In our simulation, WAP-LRU increased the lifetime of NAND flash memory by reducing the number of garbage collections by 63.1% on average. In addition, energy consumption is reduced by an average of 53.4% compared to DRAM disk buffers.