• Title/Summary/Keyword: Hybrid Rocket Motor

Search Result 65, Processing Time 0.021 seconds

A Study on the Simultaneous Ignition and Flow Distribution of Hybrid Rocket Clustering Model (하이브리드 로켓 클러스터링 모델의 동시 점화 및 유량 분배 연구)

  • Park, Sunjung;Moon, Keunhwan;Lee, Changwoo;Lee, Yeongseok;Kang, Soyoung;Moon, Heejang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.781-786
    • /
    • 2017
  • This study aims to acquire a basic clustering technology of hybrid rocket motor for lunar lander, including the oxidizer flow distribution characteristic and the simultaneous ignition characteristic. The experimental setups were established to conduct a series of ground firing test of a clustered motor. The gaseous oxygen (GOX) and the HDPE (High Density PolyEthylene) were used as the oxidizer and the solid fuel, respectively. Experimental results which are the simultaneous pyrotechnic ignition characteristic, the oxidizer distribution characteristic and the pressure traces of each combustion chamber imply that the hybrid rocket clustered motor works successfully.

  • PDF

Development of Small-scale Hybrid Rocket Motor using $PE-N_2O$ Propellants ($PE-N_2O$ 추진제를 이용한 소형 하이브리드 로켓 모터 개발)

  • Cho, Seung-Hyun;Park, Koo-Jeong;Cho, Jung-Tae;Kim, Jong-Chan;Yoon, Chang-Jin;Kim, Jin-Kon;Moon, Hee-Jang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.370-373
    • /
    • 2007
  • In this study, a hybrid rocket motor with separable and detachable oxidizer tank from combustion chamber is developed. Initially, the measured thrust of the motor showed about 30% of the design thrust since the oxidizer supply was not enough. In order to solve this problem, application is made to expand the orifice diameter of oxidizer injector empirically, so that the mass flow rate of oxidizer was improved. The improved performance was about 60% of design thrust, 18kgf, and thrust-to-weight ratio was reasonable, compared with other sounding rockets.

  • PDF

Effect of Diaphragm Thickness on Regression Rate Improvement in Hybrid Rocket Motor (다이아프램 두께 변화에 따른 하이브리드 로켓의 후퇴율 향상에 관한 연구)

  • Ryu, Sung-Hoon;Oh, Ji-Sung;Moon, Keun-Hwan;Kim, Hak-Chul;Moon, Hee-Jang;Kim, Jin-Kon
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.23 no.4
    • /
    • pp.1-5
    • /
    • 2015
  • In this work, a study was conducted to investigate the effect of diaphragm thickness on the regression rate of the hybrid rocket motor. To observe the flow pattern and the recirculation zone, visualizations of combustion chambers with different diaphragm thickness (5mm, 10mm) were performed. It was found that the case with 5 mm thickness had a larger recirculation zone and therefore, had a higher regression rate than the case with 10mm thickness due to the increased residence time and heat transfer toward the fuel surface. Finally, it was concluded that the thickness of diaphragm can be a critical parameter for the enhancement of the regression rate.

System Design and Fundamental Experiment for Thrust Control of $GO_2$/PE Hybrid Rocket ($GO_2$/PE 하이브리드 로켓의 추력제어를 위한 시스템 설계 및 기초실험)

  • Lee, Yong-Wu;Kang, Wan-Kyu;Huh, Hwan-Il
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.1
    • /
    • pp.40-47
    • /
    • 2010
  • In this study, basic research on the thrust control by controling oxidizer mass flow rate of a $GO_2$/PE hybrid rocket is presented. For this purpose, hybrid rocket system including oxidizer flow control system and data acquisition system was developed. To control oxidizer mass flow rate, we used needle valve with stepping motor which was controled by LabVIEW program. During the fundamental experiments, this system managed to follow the pre-programmed (20 N - 10 N - 20 N - 0 N) thrust level.

Firing Test for Hybrid Rocket Motor with 650 kgf Thrust Level (추력 650 kgf 급 하이브리드 로켓 모터의 연소시험)

  • Lee, Jung-Pyo;Kim, Soo-Jong;Kim, Gi-Hun;Cho, Jung-Tae;Kim, Hak-Chul;Woo, Kyong-Jin;Do, Gyu-Sung;So, Jung-Soo;Oh, Jung-Soo;Cho, Min-Gyung;Moon, Hee-Jang;Sung, Hong-Gye;Kim, Jin-Kon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.503-506
    • /
    • 2009
  • In this study, we presented the results of static firing tests on the PE/LN2O hybrid rocket motor, which has a thrust of 650 kgf level. Through the early tests, we found that the combustion chamber pressure and the thrust were lower than design values because an actual oxidizer flow rate was less than that expected. In order to complement this result, the methods of decrease of nozzle throat and the increase of oxidizer mass flow rate were conducted in the next experiment, and we studied the combustion phenomena with the experimental results. Also we compared and analyzed a difference of combustion characteristics on scale effect. It show that a sub-scale motor regression rate was a little less than that of a lab-scale motor with the same oxidizer mass flux. Results of this study might be used as a basic data for development of hybrid sounding rocket.

  • PDF

Scale Effect on Combustion Characteristics of N2O/PE Hybrid Rocket (N2O/PE 하이브리드 로켓의 스케일 변화에 따른 연소특성 연구)

  • Han, Seongjoo;Moon, Keunhwan;Kim, Jinkon;Moon, Heejang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.797-802
    • /
    • 2017
  • This paper describes the scale effect of hybrid rocket motor which has blow-down oxidizer supply system. ResuIts show that the scale effect on regression rate is negligible using presently accessible scaling relation for $LN_2O$/PE propellant combination amid the absence of exactly proven scaling relation. It was also found that the characteristic velocity efficiency increases as motor scale increases. However, the characteristic velocity efficiency includes complicated parameters such as post-chamber configuration or geometry which can affect the entire flow field. It is therefore hard to conclude that the increase of efficiency is solely due to the enlargement of motor scale nor draw any conclusion on the scale effect which require a profound understanding of hybrid rocket scaling rules.

  • PDF

Internal Flow Dynamics and Regression Rate in Hybrid Rocket Combustion

  • Lee, Changjin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.4
    • /
    • pp.507-514
    • /
    • 2012
  • The present study is the analyses of what has been attempted and what was understood in terms of improving the regression rate and enlarging the basic understanding of internal flow dynamics. The first part is mainly intended to assess the role of helical grain configuration in the regression rate inside the hybrid rocket motor. To improve the regression rate, a combination of swirl (which is an active method) and helical grain (which is a passive method) was adopted. The second part is devoted to the internal flow dynamics of hybrid rocket combustion. A large eddy simulation was also performed with an objective of understanding the origin of isolated surface roughness patterns seen in several recent experiments. Several turbulent statistics and correlations indicate that the wall injection drastically changes the characteristics of the near-wall turbulence. Contours of instantaneous streamwise velocity in the plane close to the wall clearly show that the structural feature has been significantly altered by the application of wall injection, which is reminiscent of the isolated roughness patterns found in several experiments.

A Study on Structural Safety of the Solid Fuel Grain by Hot Flow inside a Hybrid Rocket Combustor (Multi-port 하이브리드 로켓 연소기에서 고온 산화제 유동에 의한 고체연료의 구조적 안전성에 대한 연구)

  • Do, Gyu-Sung;Yoon, Chang-Jin;Kim, Jin-Kon;Moon, Hee-Jang
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.15 no.4
    • /
    • pp.38-44
    • /
    • 2007
  • This paper describes the structural safety of solid fuel in the Hybrid Rocket Motor (HRM). Hybrid rocket combustion has the distinct regression characteristics which include the process of thermal pyrolysis and fuel vaporization. Most of all, this regression characteristics would structurally affect the strength of the fuel having a multi-port configuration, and even may cause the breaking from the fuel grain. This problem would probably influence the performance and operating safety of HRM. Therefore, for the safe operation of HRM, the critical port radius which determines the structurally safe region was discussed from the heat analysis of the solid fuel.

  • PDF

Study of Thrust Control Performance Improvement for Hybrid Rocket Applications (하이브리드 로켓의 추력제어 성능 향상에 관한 연구)

  • Choi, Jae-Sung;Kang, Wan-Kyu;Huh, Hwan-Il
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.1
    • /
    • pp.55-62
    • /
    • 2011
  • In this study, we tried to improve the thrust control performance through the thrust control combustion experiment of the hybrid rocket. We constructed the system which controls the oxidizer flow by combining a needle valve with a stepping motor and controlling the stepping motor drive according to the thrust control command order. Gas oxygen was used as the oxidizer for two different propellants, PE(Polyethylene), PC(Polycarbonate), respectively. To improve the slow response time and the oscillation phenomenon in the beginning stage of the thrust control combustion experiment, we measured and analyzed the change of the flow speed of the propellant pipe. The revised thrust control combustion experiment showed that the thrust was stably controlled with the margin or error from the thrust command within ${\pm}1$ N.

Design of Hybrid Rocket (Altitude 15km) Using Liquid Oxidizer ${N_2}O$ (${N_2}O$ 액체산화제를 사용한 고도 15km급 하이브리드 로켓 설계)

  • Heo, Jun-Young;Cho, Min-Gyung;Kim, Jong-Chan;Kim, Soo-Jong;Kim, Jin-Kon;Moon, Hee-Jang;Sung, Hong-Gye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.97-100
    • /
    • 2008
  • A hybrid sounding rocket carrying about 10kg payload reaching up to 15km altitude has been designed. The commercial seamless aluminium tube and liquid ${N_2}O$ without pressurization devices were chosen as rocket motor case and oxidizer supply system respectively. A hybrid rocket engine performing required propulsion impulse is designed with time dependent internal ballistic scheme. Engine performance, aerodynamic characteristics, and trajectory were predicted by a integral technique of internal ballistics and external ballistics. The design results were evaluated by comparison with previous experimental data, technical reports, and literatures.

  • PDF