• Title/Summary/Keyword: Hybrid Reactor

Search Result 164, Processing Time 0.025 seconds

Denitrification of Anaerobic Sludge in Hybrid Type Anaerobic Reactor(II): Glucose as Substrate (Hybrid type 반응조에서의 혐기성 슬러지의 탈질(II): 기질이 글루코스인 경우)

  • Shin, Hang-Sik;Kim, Ku-Yong;Lee, Chae-Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.14 no.2
    • /
    • pp.196-206
    • /
    • 2000
  • Methanogenesis and denitrification in an upflow sludge baffled filter (UBF) reactor were studied using glucose as a fermentative substrate. Experiments were carried out to investigate how to reduce ammonification by changing alkalinity and $COD/NO_3-N$ ratio. Characteristics of granular sludges were examined by specifics methanogenic activity(SMA) and specific denitrification rate(SDR) tests. Microstructures of granules were examined using a scanning electron microscopy(SEM). It was found that COD was removed efficiently owing to the diverse microorganisms. In nitrate conversion, not only $COD/NO_3-N$ ratio but also influent alkalinity played important role in the ratio of denitrification and ammonification of nitrate. This reactor achieved over 95% COD and 99% nitrate removal efficiencies when influent contained 4000 mgCOD/L and $700mgNO_3-N/L$ at the hydraulic retention time of 24 hours. As $COD/NO_3-N$ ratio decreased, granular methanogenic activities using acetate and butyrate as substrates increased while activities using propionate and glucose decreased. There were three types in granules according to the surface color; gray, yellowish gray, and black. Gray or yellowish gray-colored granules were composed two layers, which were composed of black inner side and gray or yellowish gray surface substances. SEM illustrated that both were rod-type and cocci-type microorganisms resembling Methanothrix sp. and Methanococci sp. This study showed that by controlling the influent alkalinity and $COD/NO_3-N$ ratio, ammonification and denitrification could be manipulated.

  • PDF

Conversion of CO2 and CH4 through Hybrid Reactor Composed of Plasma and Catalyst at Atmospheric Pressure (상압 플라즈마-촉매 하이브리드 반응기를 통한 CO2와 CH4의 전환처리)

  • Kim, Tae Kyung;Nguyen, Duc Ba;Lee, Won Gyu
    • Applied Chemistry for Engineering
    • /
    • v.25 no.5
    • /
    • pp.497-502
    • /
    • 2014
  • The conversion reaction of methane and carbon dioxide at an atmospheric pressure plasma reactor filled with Ni-$Al_2O_3$ and Ni-$MgAl_2O_4$ catalyst was performed. Effects of various process parameters such as the applied electric power, reaction gas flow rate, reactor temperature, mixing ratio of reactants and the presence of the catalyst on the reaction between methane and carbon dioxide were analyzed. From the analysis of the contribution of the catalyst in the reaction step, even if the temperature raised to $400^{\circ}C$, there was no spontaneous catalytic conversion of methane and carbon dioxide without plasma discharges. When the catalysts for the conversion of methane and carbon dioxide would be adopted to the plasma reactor, the careful selection of suitable catalysts and process parameters should be essential.

Current Status of Nuclear Hydrogen Development (원자력을 이용한 수소생산기술 개발 동향)

  • Chang Jong-Hwa
    • Journal of Energy Engineering
    • /
    • v.15 no.2 s.46
    • /
    • pp.127-137
    • /
    • 2006
  • To resolve the environmental and economics problems of fossil fuel energy, a hydrogen economy is promoted in many developed countries. Massive production of hydrogen using a nuclear power is a practical way to feed fuel required for the hydrogen economy. The author introduces a very high temperature reactor and its development status. He also reviews recent achievements and directions of research in hydrogen production process, such as sulfur-iodine thermochemical cycle, sulfur hybrid cycle, and high temperature electrolysis.

Thermal Test of High-Temperature Solar Concentrating System for Hybrid Power Generation (복합발전용 고온 집광시스템의 집열 특성 분석)

  • Kim, Jin-Soo;Lee, Sang-Nam;Kang, Yong-Heack;Yun, Hwan-Ki;Yun, Chang-Kyun;Kim, Jong-Kyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.580-583
    • /
    • 2006
  • A small-scale solar concentrating system was developed and demonstrated for supplying process heat required in solar thermo chemical reaction. The concentration system consists of a heliostat equipped with a solar tracking device and a dish concentrator. From the initial thermal test of the concentrating system it was found that the system works very well with around 500-600 concentration ratio capable of supplying about 3kW therml energy to the reactor. Once the concentration system was turned on, the reactor temperature rapidly increased over $1,000^{\circ}C$ and could be maintained high enough for solar chemical reaction.

  • PDF

Treatment of Malodorous Waste Air Using Hybrid System (하이브리드시스템을 이용한 악취폐가스 처리)

  • Lee, Eun Ju;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.48 no.3
    • /
    • pp.382-390
    • /
    • 2010
  • In this research hydrogen sulfide, ammonia and toluene were designated as the representative source of malodor and VOC, respectively, frequently generated at the compost manufacturing factory and publicly owned facilities. The optimum operating condition to treat the waste air(2 L/min) containing malodor was constructed using photocatalytic reactor/biofilter process with humidifier composed of fluidized aerobic anf anoxic reactor. The ammonia(300 ppmv) of fed-waste air was removed by 22, 55 and 23% at the stage of photocatalytic reactor, humidifier and biofilter, respectively. The toluene(100 ppmv) of fed-waste air was removed by 20, 10 and 70% at the stage of photocatalytic reactor, humidifier and biofilter, respectively. Therefore the water-soluble ammonia and the water-insoluble toluene were treated mainly at the stage of humidifier and biofilter, respectively. In addition, hydrogen sulfide(10 ppmv) was almost treated at the stage of photocatalytic reactor and its negligible trace was absorbed in humidifier so that it was not detected before biofilter process. The nitrate concentration of the process water from anoxic reactor was found lower by 3 ppm than that from fluidized aerobic reactor. Besides, the dissolved ammonia-nitrogen concentration of the process water from humidifier remained at the high value of 1,500-2,000 ppm, which may be attributed to the existence of ammonium chloride and other source of ammonium nitrogen.

Time-Dependent Behavior of Waste-Air Treatment Using Integrated Hybrid System (통합 하이브리드시스템을 활용한 폐가스 처리 거동)

  • Lee, Eun Ju;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.100-115
    • /
    • 2022
  • In this study, integrated hybrid system (IHS) composed of two alternatively-operating UV/photocatalytic reactor (AOPR) process and biofilter processes of a biofilter system having two units (i.e., Rup and Rdn) with an improved design (R reactor) and a conventional biofilter (L reactor) was constructed, and its transient behavior was observed to perform the successful treatment of waste air containing ethanol and hydrogen sulfide (H2S). At the IHS-operating stages of HA1, HA2 and HA3T of reversed feed direction, the AOPR process showed not only ethanol-removal efficiencies of 55, 50 and 45%, respectively, but also H2S-removal efficiencies of 70, 60 and 37%, respectively. In particular, a drastic decrease of H2S-removal efficiency at the stage of HA3T was observed due to a doubling of H2S-inlet concentration fed to AOPR from 10 ppmv to 20 ppmv at the stage of HA3T. The order of ethanol-breakthroughs and the order of the magnitude of ethanol-removal efficiencies at the sampling ports of each unit of R reactor at the stages of HA1, HB1, HA2, HB2, and the first half of HA3T, were reversed, respectively, at the stages of the second half of HA3T and HB3T. In case of H2S, R reactor did not show H2S-breakthrough as prominent as the ethanol-breakthrough, but showed the trend similar to the ethanol-breakthrough.

Activated Carbon-Photocatalytic Hybrid System for the Treatment of the VOC in the Exhaust Gas from Painting Process (도장공정 배기가스 내 VOC 처리를 위한 활성탄-광촉매 복합시스템)

  • Lee, Chan;Cha, Sang-Won;Lee, Tae-Kyu
    • Journal of Energy Engineering
    • /
    • v.14 no.2 s.42
    • /
    • pp.133-139
    • /
    • 2005
  • An activated carbon-photo catalysis hybrid system is proposed for the treatment of VOC produced from paint booth. and its VOC removal performance is experimentally evaluated. Activated carbon tower is designed on the basis of the adsorption characteristics of toluene. Photocatalytic system is designed as the series of $TiO_2/SiO\_2$ fluidized bed reactor and $TiO_2$-coated filters. The present activated carbon-photo catalysis hybrid system shows the VOC removal efficiency within $75\~100\%$ under different VOC species and concentrations.

DEVELOPMENT OF AN OPERATION STRATEGY FOR A HYBRID SAFETY INJECTION TANK WITH AN ACTIVE SYSTEM

  • JEON, IN SEOP;KANG, HYUN GOOK
    • Nuclear Engineering and Technology
    • /
    • v.47 no.4
    • /
    • pp.443-453
    • /
    • 2015
  • A hybrid safety injection tank (H-SIT) can enhance the capability of an advanced power reactor plus (APR+) during a station black out (SBO) that is accompanied by a severe accident. It may a useful alternative to an electric motor. The operations strategy of the H-SIT has to be investigated to achieve maximum utilization of its function. In this study, the master logic diagram (i.e., an analysis for identifying the differences between an H-SIT and a safety injection pump) and an accident case classification were used to determine the parameters of the H-SIT operation. The conditions that require the use of an H-SIT were determined using a decision-making process. The proper timing for using an H-SIT was also analyzed by using the Multi-dimensional Analysis of Reactor Safety (MARS) 1.3 code (Korea Atomic Energy Research Institute, Daejeon, South Korea). The operation strategy analysis indicates that a H-SIT can mitigate five types of failure: (1) failure of the safety injection pump, (2) failure of the passive auxiliary feedwater system, (3) failure of the depressurization system, (4) failure of the shutdown cooling pump (SCP), and (5) failure of the recirculation system. The results of the MARS code demonstrate that the time allowed for recovery can be extended when using an H-SIT, compared with the same situation in which an H-SIT is not used. Based on the results, the use of an H-SIT is recommended, especially after the pilot-operated safety relief valve (POSRV) is opened.

Neutronic and thermohydraulic blanket analysis for hybrid fusion-fission reactor during operation

  • Sergey V. Bedenko ;Igor O. Lutsik;Vadim V. Prikhodko ;Anton A. Matyushin ;Sergey D. Polozkov ;Vladimir M. Shmakov ;Dmitry G. Modestov ;Hector Rene Vega-Carrillo
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2678-2686
    • /
    • 2023
  • This work demonstrates the results of full-scale numerical experiments of a hybrid thorium-containing fuel plant operating in a state close to critical due to a controlled source of D-T neutrons. The proposed facility represented a level of generated power (~10-100 MWt) in a small pilot. In this work, the simulation of the D-T neutron plasma source operation in conjunction with the facility blanket was performed. The fission of fuel nuclei and the formation of spatial-energy release were studied in this simulation, in pulsed and stationary modes of the facility operation. The optimization results of neutronic and fluid dynamics studies to level the emerging offsets of the radial energy formed in the volume of the facility multiplying part due to the pulsed operation of the D-T neutron plasma source were presented. The results will be useful in improving the power control-based subcriticality monitoring method in coupled systems of the "pulsed neutron source-subcritical fuel assembly" type.