• Title/Summary/Keyword: Hybrid Power Storage System

Search Result 183, Processing Time 0.026 seconds

Research into The Future Development of the Hybrid System for Buoy

  • Lee, Ji-Young;Kim, Jong-Do;Lee, Jong-Ho;Lee, Jin-Yeol;Oh, Jin-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.5
    • /
    • pp.583-591
    • /
    • 2007
  • This paper reports the performance of a 150W PV-wave hybrid system with battery storage in buoy. This system was originally designed to meet a new hybrid ower system for buoy in Korea. In the case or lighted buoys and lighthouses, a light failure alarm system of wireless radio is attached so that light failures are immediately notified to the office. At lighthouse offshore fixed lights and light buoys where commercial electricity is not available, the power source depends on solar system and batteries. This power system has a various problems. Therefore energy derived from the sunshine, wind and waves has been used as the energy source lot aids to navigation. Recently a hybrid system of combining the solar, wind and the wave generator is a favorable system lot the ocean facilities like lighthouse and buoy. The hybrid system in this paper is intended for variable DC load like light, communication system in the buoy and includes a PV-wane generation system and battery. This is composed a high efficiency charging algorithm, switching converter and controller. This paper includes discussion on system reliability, power quality, and effects of hybrid system in the buoy. Simulation and experimental results show excellent performance.

The Auxiliary Power Compensation Unit for Stand-Alone Photovoltaic/Wind Hybrid Generation System (독립형 소형 태양광/풍력 복합발전시스템의 출력안정화를 위한 보조 전력보상장치개발에 관한 연구)

  • Park, Se-Jun;Yoon, Jeong-Phil;Kang, Byung-Bog;Yoon, Hyung-Sang;Cha, In-Su;Lim, Jung-Yeol
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.3
    • /
    • pp.47-54
    • /
    • 2004
  • Photovoltaic energy and wind energy are highly dependent on the season, time and extremely intermittent energy sources. Because of these reasons, in view of the reliability the photovoltaic and the wind power generation system have many problems(energy conversion, energy storage, load control etc.) comparing with conventional power plant. In order to solve these existing problems, hybrid generation system composed of photovoltaic(500W) and wind power system(400W) was suggested. But, hybrid generation system cannot always generate stable output due to the varying weather condition. So, the auxiliary power compensation unit that uses elastic energy of spiral spring was added to hybrid generation system for the present study. It was partly confirmed that hybrid generation system was generated a stable outputs by spiral spring was continuously provided to load.

A Study on the Operation Method of Photovoltaic/Diesel Hybrid Generating System

  • Park, Jae-Shik;So, Myung-Ok;Yoo, Heui-Han
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.309-314
    • /
    • 2004
  • The exhaust gas emission from marine diesel engines is one of the major environmental issues. The authors focus the use of photovoltaic energy for the electric power system on marine ships. This paper proposes an operation method of a photovoltaic/diesel hybrid generating system for a small ship in consideration of the fluctuating photovoltaic power due to solar radiation. The aim of the proposed operation method is to minimize the fuel consumption and storage capacity of the battery. The validity of the proposed control method is shown by the numerical simulation based on the experimental data of the photovoltaic system.

Dynamic SOC Compensation of an Ultracapacitor Module for a Hybrid Energy Storage System

  • Song, Hyun-Sik;Jeong, Jin-Beom;Shin, Dong-Hyun;Lee, Baek-Haeng;Kim, Hee-Jun;Heo, Hoon
    • Journal of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.769-776
    • /
    • 2010
  • The ultracapacitor module has recently been recast for use in hybrid energy storage systems (HESSs). As a result, accurate state-of-charge (SOC) estimation for an ultracapacitor module is as important as that of primary sources in order to be utilized efficiently in an energy storage system (ESS). However, while SOC estimation via the open-circuit voltage (OCV) method is generally used due to its linear characteristics compared with other ESSs, this method results in many errors in cases of highcurrent charging/discharging within a short time period. Accordingly, this paper introduces a dynamic SOC estimation algorithm that is capable of SOC compensation of an ultracapacitor module even when there is a current input and output. A cycle profile that simulates the operating conditions of a mild-HEV was applied to a vehicle simulator to verify the effectiveness of the proposed algorithm.

Determination of the Hybrid Energy Storage Capacity for Wind Farm Output Compensation (풍력발전단지 출력보상용 하이브리드 에너지저장장치의 용량산정)

  • Kim, Seong Hyun;Jin, Kyung-Min;Oh, Sung-Bo;Kim, Eel-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.4
    • /
    • pp.23-30
    • /
    • 2013
  • This paper presents the determination method of the hybrid energy storage capacity for compensating the output of wind power when disconnecting from the grid. In the wind power output compensation, a lot of charging and discharging time with lithium-ion battery will be deteriorated the life time. And also, this fluctuation will cause some problems of the power quality and power system stability. To solve these kind of problems, many researchers in the world have been studied with BESS(Battery Energy Storage System) in the wind farm. But, BESS has the limitation of its output during very short term period, this means that it is difficult to compensate the very short term output of wind farm. Using the EDLC (Electric Double Layer Capacitor), it is possible to solve the problem. Installing the battery system in the wind farm, it will be possible to decrease the total capacity of BESS consisting of HESS (Hybrid Energy Storage System). This paper shows simulation results when not only BESS is connected to wind farm but also to HESS. To verify the proposed system, results of computer simulation using PSCAD/EMTDC program with actual output data of wind farms of Jeju Island will be presented.

A Study on the Economic of Electrical Storage Device of Stand Alone PV/Wind Hybrid System Based upon Sunless Days (부조일에 따른 독립형 태양광 풍력 복합발전 시스템에서 전기저장장치의 경제성에 관한 연구)

  • Choi, Byoung-Soo;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.3
    • /
    • pp.16-23
    • /
    • 2012
  • This paper relates to a study on the economic of electrical storage device for supplying power in sunless days, in the stand alone PV/Wind hybrid system, which it is applied to separate houses. In a photovoltaic/wind hybrid power system used in a separate house, when only the battery is used in sunless days, the capacity of the battery is become larger. For example, as in recent days, if cloudy days are frequent due to anomaly climate, it is difficult to supply power stably by only the battery based upon pre-estimated sunless days. Accordingly, in order to supply stably power of new renewable energy such as solar to any separate houses, it is preferable to reduce the capacity of battery by decreasing the number of sunless days when estimating the capacity of battery and to drive the small generator for compensation of the power shortage.

Power Distribution Strategy for Wireless Tram with Hybrid Energy Storage System (하이브리드 에너지 저장장치를 탑재한 무가선 트램의 전력분배전략)

  • Kang, Kyung-Jin;Oh, Yong-Kuk;Lee, Jee-Ho;Yeom, Min-Kyu;Kwak, Jae-Ho;Lee, Hyeong-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.11
    • /
    • pp.1615-1621
    • /
    • 2014
  • A wireless tram which runs without catenary and instead uses batteries installed in the tram has been recently researched actively. This paper presents a new method maximizing absorption of regenerative energy of a wireless tram and extending life cycle of the energy storage device in the wireless tram by applying line-optimized charging and discharging scenario. Energy efficiency and life cycle of energy storage system (ESS) are highly dependent on the characteristic of operating conditions. For example, frequent charge and discharge with high power cause the problems that decrease the battery life cycles. Hybrid energy storage system (HESS) is combination of two ESSs which have complementary characteristics to each other. HESS can provide even better functionality and performance than the battery only ESS due to the synergy effect of two ESSs. This paper also provides a power distribution strategy and driving scenarios which increase the life cycle and energy efficiency of the HESS consisting of a battery and an ultra-capacitor. The developed strategy was tested and verified by a hardware-in-the-loop-simulation (HILS) system which emulates the a wireless tram.

Hybrid Energy Storage System with Emergency Power Function of Standardization Technology (비상전원 기능을 갖는 하이브리드 에너지저장시스템 표준화 기술)

  • Hong, Kyungjin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.2
    • /
    • pp.187-192
    • /
    • 2019
  • Hybrid power storage system with emergency power function for demand management and power outage minimizes the investment cost in the building of buildings and factories requiring emergency power generation facilities, We propose a new business model by developing technology that can secure economical efficiency by reducing power cost at all times. Normally, system power is supplied to load through STS (Static Transfer Switch), and PCS is connected to system in parallel to perform demand management. In order to efficiently operate the electric power through demand forecasting, the EMS issues a charge / discharge command to the ESS as a PMS (Power Management System), and the PMS transmits the command to the PCS controller to operate the system. During the power outage, the STS is rapidly disengaged from the system, and the PCS becomes an independent power supply and can supply constant voltage / constant frequency power to the load side. Therefore, it is possible to secure reliability through verification of actual system linkage and independent operation performance of hybrid ESS, By enabling low-carbon green growth technology to operate in conjunction with an efficient grid, it is possible to improve irregular power quality and contribute to peak load by generating renewable energy through ESS linkage. In addition, the ESS is replacing the frequency follow-up reserve, which is currently under the charge of coal-fired power generation, and thus it is anticipated that the operation cost of the LNG generator with high fuel cost can be reduced.

Design and Construction Experiences of Solar Thermal Chemical Reaction Hybrid Power Generation (태양열 화학반응 복합발전시스템의 설계 및 시공 사례)

  • Lee, Sang-Nam;Kang, Yong-Heack;Kim, Jin-Soo;Yoon, Hwan-Ki;Yu, Chang-Kyun;Kim, Jong-Kyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.688-692
    • /
    • 2007
  • Solar thermal power generation allows additional benefits of cheap thermal storage and easy hybridization with other fossil fuel-driven power generation. KIER has been performing the project for solar thermal chemical reaction hybrid power generation. The project is to build and operate the first solar thermal chemical reaction hybrid power generation system in Korea. For concentrating solar thermal energy $m^2$ dish type concentrator was adapted and a heliostat is installed for reflecting horizontal insolation to the dish concentrator. At the moment building the dish concentrator including mirror and heliostat with sun tracking system was completed and it's performance are being closely evaluated. This paper will introduce some detailed designs and construction procedures which we have experienced so far.

  • PDF

The Operation Characteristic of the LED Taxi Light for Wavelength According to Meteorological Changes for Hybrid System Using a ESS (하이브리드 시스템의 ESS를 이용한 기상변화의 파장별 LED 항공유도등 동작특성)

  • Hwang, Lark-Hoon;Kim, Jin-Sun;Na, Yong- Ju
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.4
    • /
    • pp.265-274
    • /
    • 2016
  • In this study, the system was composed of the booster chopper and the power converter, which is a pulse width modulation (PWM) voltage inverter using a hybrid power generation system solar cell energy and wind force, Furthermore, in order to compensate the PWM voltage type inverter was linked with the general commercial power source, and through a normal operation of energy storage system (ESS), the system operated the LED Taxi Light by Wavelength according to Meteorological Changes at the airport in an efficient manner. The performance of the system was compared with the solar cell characteristics specification. In addition, for phase synchronization with the PWM voltage type inverter, the grid voltage was detected so as to operate the grid voltage and inverter output in the same phase and to connect the surplus electric power with the system. Finally, by developing a control circuit at the same time from which an excellent dynamic characteristics can be obtained through applying to the airport runway taxi light, it was concluded that a variety of taxi light can be pursued.