• 제목/요약/키워드: Hybrid Models

검색결과 816건 처리시간 0.036초

Neural Network Modeling of PECVD SiN Films and Its Optimization Using Genetic Algorithms

  • Han, Seung-Soo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제1권1호
    • /
    • pp.87-94
    • /
    • 2001
  • Silicon nitride films grown by plasma-enhanced chemical vapor deposition (PECVD) are useful for a variety of applications, including anti-reflecting coatings in solar cells, passivation layers, dielectric layers in metal/insulator structures, and diffusion masks. PECVD systems are controlled by many operating variables, including RF power, pressure, gas flow rate, reactant composition, and substrate temperature. The wide variety of processing conditions, as well as the complex nature of particle dynamics within a plasma, makes tailoring SiN film properties very challenging, since it is difficult to determine the exact relationship between desired film properties and controllable deposition conditions. In this study, SiN PECVD modeling using optimized neural networks has been investigated. The deposition of SiN was characterized via a central composite experimental design, and data from this experiment was used to train and optimize feed-forward neural networks using the back-propagation algorithm. From these neural process models, the effect of deposition conditions on film properties has been studied. A recipe synthesis (optimization) procedure was then performed using the optimized neural network models to generate the necessary deposition conditions to obtain several novel film qualities including high charge density and long lifetime. This optimization procedure utilized genetic algorithms, hybrid combinations of genetic algorithm and Powells algorithm, and hybrid combinations of genetic algorithm and simplex algorithm. Recipes predicted by these techniques were verified by experiment, and the performance of each optimization method are compared. It was found that the hybrid combinations of genetic algorithm and simplex algorithm generated recipes produced films of superior quality.

  • PDF

주제공원의 경쟁력 제고 방안에 관한 연구: Hybrid Conjoint Analysis의 적용 (Application of Hybrid Conjoint Analysis to Improve Competitive Power of Theme Parks in Seoul and Its Suburbs)

  • 홍성권
    • 한국조경학회지
    • /
    • 제23권2호
    • /
    • pp.1-16
    • /
    • 1995
  • This study was carried out to suggest method which can be used to improve competitive power of theme parks. The characteristics of Hybrid Conjoint Analysis were described and its usefulness for identification of specific types of service theme parks have to provide was tested "Lotte World, " "Seoul land," and "farmland" were selected as study areas, and .7 attributes with 3 levels were utilized for analyses. Master design with 81 profiles was constructed to meet the requirement of ′Compromise Plan 1,′and data was collected by in-personal interviews on the study areas. Respondents were grouped by cluster analysis, and their characteristics were analyzed by discriminant analysis. Then, part-worth of each attribute . was estimated by stagewise estimation model Calibrated model of each group did not show part-worths of attributes clearly because both main effects and 2-way interaction effects were included in the models. Therefore, calibrated models′ coefficients were used to calculate utilities of all possible combinations of attributes levels. The results showed that managers of theme parks have several options for providing a new service: the combination of attribute levels with the highest utility is they however, they can choose the other combinations with next highest utlities is they can not afford it. Several suggestions were described to cope with the problems when Hybrid Conjoint Analysis is applied to landscape architectural study.

  • PDF

Estimation of splitting tensile strength of modified recycled aggregate concrete using hybrid algorithms

  • Zhu, Yirong;Huang, Lihua;Zhang, Zhijun;Bayrami, Behzad
    • Steel and Composite Structures
    • /
    • 제44권3호
    • /
    • pp.389-406
    • /
    • 2022
  • Recycling concrete construction waste is an encouraging step toward green and sustainable building. A lot of research has been done on recycled aggregate concretes (RACs), but not nearly as much has been done on concrete made with recycled aggregate. Recycled aggregate concrete, on the other hand, has been found to have a lower mechanical productivity compared to conventional one. Accurately estimating the mechanical behavior of the concrete samples is a most important scientific topic in civil, structural, and construction engineering. This may prevent the need for excess time and effort and lead to economic considerations because experimental studies are often time-consuming, costly, and troublous. This study presents a comprehensive data-mining-based model for predicting the splitting tensile strength of recycled aggregate concrete modified with glass fiber and silica fume. For this purpose, first, 168 splitting tensile strength tests under different conditions have been performed in the laboratory, then based on the different conditions of each experiment, some variables are considered as input parameters to predict the splitting tensile strength. Then, three hybrid models as GWO-RF, GWO-MLP, and GWO-SVR, were utilized for this purpose. The results showed that all developed GWO-based hybrid predicting models have good agreement with measured experimental results. Significantly, the GWO-RF model has the best accuracy based on the model performance assessment criteria for training and testing data.

Hybrid PSO-Complex Algorithm Based Parameter Identification for a Composite Load Model

  • Del Castillo, Manuelito Y. Jr.;Song, Hwachang;Lee, Byongjun
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권3호
    • /
    • pp.464-471
    • /
    • 2013
  • This paper proposes a hybrid searching algorithm based on parameter identification for power system load models. Hybrid searching was performed by the combination of particle swarm optimization (PSO) and a complex method, which enhances the convergence of solutions closer to minima and takes advantage of global searching with PSO. In this paper, the load model of interest is composed of a ZIP model and a third-order model for induction motors for stability analysis, and parameter sets are obtained that best-fit the output measurement data using the hybrid search. The origin of the hybrid method is to further apply the complex method as a local search for finding better solutions using the selected particles from the performed PSO procedure.

Cockpit Module용 Hybrid Structure개발에 관한 연구 (A Study on a Development of Hybrid(Magnesium & Steel) Structure for Application of Cockpit Module)

  • 박병구;이정환;김영삼;한성수
    • 한국자동차공학회논문집
    • /
    • 제10권6호
    • /
    • pp.166-170
    • /
    • 2002
  • A hybrid structure composed of magnesium and steel is Instrument Panel structure used for the basement of cockpit module components. For that reason, A hybrid structure has to be designed for satisfying components assembly design facility and styling. There are various models of If like steel structure assembly, however having been applied normally, but magnesium structure assembly selected far saving weight down. This paper introduces a hybrid structure having advantages between steel and magnesium structure and presents a CAE technical solution based on a development project. furthermore, it provides desired direction of the future development is suggested.

De-novo Hybrid Protein Design for Biodegradation of Organophosphate Pesticides

  • Awasthi, Garima;Yadav, Ruchi;Srivastava, Prachi
    • 한국미생물·생명공학회지
    • /
    • 제47권2호
    • /
    • pp.278-288
    • /
    • 2019
  • In the present investigation, we attempted to design a protocol to develop a hybrid protein with better bioremediation capacity. Using in silico approaches, a Hybrid Open Reading Frame (Hybrid ORF) is developed targeting the genes of microorganisms known for degradation of organophosphates. Out of 21 genes identified through BLAST search, 8 structurally similar genes (opdA, opd, opaA, pte RO, pdeA, parC, mpd and phnE) involved in biodegradation were screened. Gene conservational analysis categorizes these organophosphates degrading 8 genes into 4 super families i.e., Metallo-dependent hydrolases, Lactamase B, MPP and TM_PBP2 superfamily. Hybrid protein structure was modeled using multi-template homology modeling (3S07_A; 99%, 1P9E_A; 98%, 2ZO9_B; 33%, 2DXL_A; 33%) by $Schr{\ddot{o}}dinger$ software suit version 10.4.018. Structural verification of protein models was done using Ramachandran plot, it was showing 96.0% residue in the favored region, which was verified using RAMPAGE. The phosphotriesterase protein was showing the highest structural similarity with hybrid protein having raw score 984. The 5 binding sites of hybrid protein were identified through binding site prediction. The docking study shows that hybrid protein potentially interacts with 10 different organophosphates. The study results indicate that the hybrid protein designed has the capability of degrading a wide range of organophosphate compounds.

분산 메모리 시스템에서 압력방정식의 해법을 위한 MPI와 Hybrid 병렬 기법의 비교 (Comparison of Message Passing Interface and Hybrid Programming Models to Solve Pressure Equation in Distributed Memory System)

  • 전병진;최형권
    • 대한기계학회논문집B
    • /
    • 제39권2호
    • /
    • pp.191-197
    • /
    • 2015
  • 본 연구에서는 분산 메모리시스템에서의 압력 방정식의 병렬해법을 위하여 MPI(Message Passing Interface)와 하이브리드 병렬기법을 사용하였다. 두 모델은 영역분할 기법을 활용하며, 하이브리드 기법은 성능이 양호한 두 가지 영역분할에 대해 수행하였다. 두 병렬기법의 성능을 비교하기 위해서 다양한 문제 크기에 대해 최대 96개의 쓰레드를 사용하여 속도향상을 측정하였다. 병렬 성능은 캐쉬 메모리에 따른 문제의 크기 및 MPI 통신, OpenMP 지시어의 부하에 대해 영향을 받음을 확인하였다. 문제의 크기가 작은 경우에는 쓰레드가 증가할수록 MPI 통신 및 OpenMP 지시어 부하에 대한 비율이 상대적으로 크기 때문에 병렬 성능이 좋지 않으며, MPI 통신 부하보다는 OpenMP 지시어 부하가 상대적으로 크므로 MPI 병렬 기법의 병렬 성능이 더 우수하다. 문제의 크기가 큰 경우에는 캐쉬 메모리의 활용도가 높고 MPI 통신 및 OpenMP 지시어 부하에 대한 비율이 낮아 병렬 성능이 좋으며, OpenMP 지시어보다 MPI 통신에 의한 부하가 더 지배적이어서 하이브리드 병렬 성능이 MPI 병렬 성능보다 더 양호하다.

Seismic motions in a non-homogeneous soil deposit with tunnels by a hybrid computational technique

  • Manolis, G.D.;Makra, Konstantia;Dineva, Petia S.;Rangelov, Tsviatko V.
    • Earthquakes and Structures
    • /
    • 제5권2호
    • /
    • pp.161-205
    • /
    • 2013
  • We study seismically induced, anti-plane strain wave motion in a non-homogeneous geological region containing tunnels. Two different scenarios are considered: (a) The first models two tunnels in a finite geological region embedded within a laterally inhomogeneous, layered geological profile containing a seismic source. For this case, labelled as the first boundary-value problem (BVP 1), an efficient hybrid technique comprising the finite difference method (FDM) and the boundary element method (BEM) is developed and applied. Since the later method is based on the frequency-dependent fundamental solution of elastodynamics, the hybrid technique is defined in the frequency domain. Then, an inverse fast Fourier transformation (FFT) is used to recover time histories; (b) The second models a finite region with two tunnels, is embedded in a homogeneous half-plane, and is subjected to incident, time-harmonic SH-waves. This case, labelled as the second boundary-value problem (BVP 2), considers complex soil properties such as anisotropy, continuous inhomogeneity and poroelasticity. The computational approach is now the BEM alone, since solution of the surrounding half plane by the FDM is unnecessary. In sum, the hybrid FDM-BEM technique is able to quantify dependence of the signals that develop at the free surface to the following key parameters: seismic source properties and heterogeneous structure of the wave path (the FDM component) and near-surface geological deposits containing discontinuities in the form of tunnels (the BEM component). Finally, the hybrid technique is used for evaluating the seismic wave field that develops within a key geological cross-section of the Metro construction project in Thessaloniki, Greece, which includes the important Roman-era historical monument of Rotunda dating from the 3rd century A.D.

A real-time hybrid testing method for vehicle-bridge coupling systems

  • Guoshan Xu;Yutong Jiang;Xizhan Ning;Zhipeng Liu
    • Smart Structures and Systems
    • /
    • 제33권1호
    • /
    • pp.1-16
    • /
    • 2024
  • The investigation on vehicle-bridge coupling system (VBCS) is crucial in bridge design, bridge condition evaluation, and vehicle overload control. A real-time hybrid testing (RTHT) method for VBCS (RTHT-VBCS) is proposed in this paper for accurately and economically disclosing the dynamic performance of VBCSs. In the proposed method, one of the carriages is chosen as the experimental substructure loaded by servo-hydraulic actuator loading system in the laboratory, and the remaining carriages as well as the bridge structure are chosen as the numerical substructure numerically simulated in one computer. The numerical substructure and the experimental substructure are synchronized at their coupling points in terms of force equilibrium and deformation compatibility. Compared to the traditional iteration experimental method and the numerical simulation method, the proposed RTHT-VBCS method could not only obtain the dynamic response of VBCS, but also economically analyze various working conditions. Firstly, the theory of RTHT-VBCS is proposed. Secondly, numerical models of VBCS for RTHT method are presented. Finally, the feasibility and accuracy of the RTHT-VBCS are preliminarily validated by real-time hybrid simulations (RTHSs). It is shown that, the proposed RTHT-VBCS is feasible and shows great advantages over the traditional methods, and the proposed models can effectively represent the VBCS for RTHT method in terms of the force equilibrium and deformation compatibility at the coupling point. It is shown that the results of the single-degree-of-freedom model and the train vehicle model are match well with the referenced results. The RTHS results preliminarily prove the effectiveness and accuracy of the proposed RTHT-VBCS.

비상용 디젤동기발전시스템기반 독립운전 하이브리드에너지시스템 모델 설정 및 시뮬레이션 분석에 관한 연구 (Simulation Analysis and Development of Matlab/Simulink Model for Stand-alone Operation of Emergency Diesel Synchronous Generator-based Hybrid Energy System)

  • 홍원표
    • 조명전기설비학회논문지
    • /
    • 제29권1호
    • /
    • pp.70-79
    • /
    • 2015
  • In this paper, enhanced stand-alone operation and development of Matlab/Simulink model of emergency diesel based hybrid energy system is presented. Simulations based on the remote community or islands were performed for PV-diesel-battery hybrid system. Modeling of PV-diesel-battery integrated system is done to perform under the solar radiation and load conditions on Matlab/Simulink platform. The models of diesel generator unit, battery energy storage system, PV and frequency-power control are developed and simulation studies have been carried out under various conditions using Matlab/Simulink and SimPowerSystem. It is demonstrated that the proposed system can provide reliable and good quality power to the customers in diesel synchronous generator-based hybrid energy systems.