KSII Transactions on Internet and Information Systems (TIIS)
/
제16권9호
/
pp.3194-3210
/
2022
Wall obstruction is the main factor leading to the non-line of sight (NLoS) error of indoor localization based on received signal strength indicator (RSSI). Modeling and correcting the path loss of the signals through the wall will improve the accuracy of RSSI localization. Based on electromagnetic wave propagation theory, the reflection and transmission process of wireless signals propagation through the wall is analyzed. The path loss of signals through wall is deduced based on power loss and RSSI definition, and the theoretical model of path loss of signals through wall is proposed. In view of electromagnetic characteristic parameters of the theoretical model usually cannot be accurately obtained, the statistical model of NLoS error caused by the signals through the wall is presented based on the log-distance path loss model to solve the parameters. Combining the statistical model and theoretical model, a hybrid model of path loss of signals through wall is proposed. Based on the empirical values of electromagnetic characteristic parameters of the concrete wall, the effect of each electromagnetic characteristic parameters on path loss is analyzed, and the theoretical model of regional path loss of signals through the wall is established. The statistical model and hybrid model of regional path loss of signals through wall are established by RSSI observation experiments, respectively. The hybrid model can solve the problem of path loss when the material of wall is unknown. The results show that the hybrid model can better express the actual trend of the regional path loss and maintain the pass loss continuity of adjacent areas. The validity of the hybrid model is verified by inverse computation of the RSSI of the extended region, and the calculated RSSI is basically consistent with the measured RSSI. The hybrid model can be used to forecast regional path loss of signals through the wall.
본 연구에서는 시계열 예측을 위해 선형 모형과 비선형 모형의 하이브리드 모형 및 순수 모형의 성과를 비교 평가하였다. 이를 위해 5가지 서로 다른 패턴을 가지는 데이터를 생성하여 시뮬레이션을 진행하였다. 본 연구에서 고려한 선형 모형은 AR(autoregressive model)과 SARIMA(seasonal autoregressive integrated moving average model)이고 비선형 모형은 인공신경망(artificial neural networks model)과 GAM(generalized additive model)이다. 특히, GAM은 여러 장점에도 불구하고 시계열 예측을 위한 비선형 모형으로 기존 연구들에서는 거의 쓰이지 않았던 모형이다. 시뮬레이션 결과, seasonality를 가지는 시계열에 대해서는 AR 및 AR-AR 모형이, trend를 가지는 시계열에 대해서는 SARIMA 및 SARIMA와 다른 모형의 하이브리드 모형이 다른 모형에 비해 높은 성과를 보였다. 한편, 인공신경망과 GAM을 비교하면, 트렌드와 계절성이 더해진 시계열에 대해 SARIMA와 GAM의 하이브리드 모형이 거의 모든 노이즈(noise) 수준에 대해 높은 성과를 보인 반면, 노이즈 수준이 미미한 경우에 한해 SARIMA와 인공신경망의 하이브리드 모형이 높은 성과를 보였다.
Journal of Advanced Marine Engineering and Technology
/
제40권8호
/
pp.721-725
/
2016
This paper reviews the analysis of a given scenario according to the Hybrid Model, and why accident causation models are necessary in casualty investigations. The given scenario has been analyzed according to the Hybrid Model using its main five components, fallible decisions, line management, psychological precursors to unsafe acts, unsafe acts, and inadequate defenses. In addition, the differences between the SHEL and the Hybrid Model, and the importance of a safety barrier during an accident investigation, are shown in this paper. One unit of SHEL can be linked with another unit of SHEL. However, it cannot be used for the analysis of an accident. Therefore, we must use an accident causation model, which can be a Hybrid Model. This can explain the "How" and "Why" of accident, so it is a suitable model for analyzing them. During an accident investigation, the reason we focus on a safety barrier is to create another safety barrier or to change an existing safety barrier if that barrier fails. Hence, the paper shows how a sea accident can be investigated, and we propose a preventive way of avoiding the accident through combining the methods of different models for the future.
The hybrid model can be used to predict the initial near field mixing and the far field transport of the buoyant jets, which are discharged from the submerged wastewater ocean outfall. In the near field, the jet integral model can be used for single port diffusers while the ${\sigma}$ transformed particle tracking model was used in the far field. In this study, the experimental study was performed to verify the developed hybrid model in the previous research. The developed hybrid model properly predict the surface and vertical concentration distribution of the single buoyant jets with various effluent and ambient conditions. The hybrid model can also simulate the surface concentration distribution of the rosette diffuser except for the parallel diffuser with the higher densimetric Froude number due to the assumption that dynamic effects of the effluent plumes are negligible in the far field. The application of the hybrid model to rosette diffusers can predict the concentration near the diffuser more accurately when the line-plume approximation is used.
인터넷에 대한 의존도가 증가하면서 인터넷 웜에 대한 연구의 필요성이 증가하게 되었다. 인터넷 웜을 연구하는 데 가장 많이 사용하는 방법 중의 하나는 시뮬레이션인데, 대규모 네트워크상에서 동작하는 웜을 시뮬레이션 하는 데에는 성능, 확장성 등의 문제가 발생한다. 이에 본 논문에서는 대규모 인터넷 웜, 특히 RCS(Random Constant Spreading) 특성을 갖는 웜을 시뮬레이션 할 때 발생하는 문제점을 줄여, 효율적인 시뮬레이션이 가능하도록 하는 hybrid 모델링 방법을 제안하였다. 본 논문에서 제안하는 hybrid모델은 epidemic모델과 유체 모델을 사용한 모델링 네트워크와 패킷 네트워크의 연동을 통하여 시뮬레이션을 수행하도록 하였으며, 이로 인하여 일반적인 모델링 기법의 장점인 빠른 수행 시간을 가짐과 동시에 패킷 네트워크를 이용하여 동적으로 인자값을 업데이트할 수 있게 되었다. 또한, 한 번의 시뮬레이션을 통해 모델링 네트워크로부터 거시적인 정보와 패킷 네트워크로부터 세부적인 정보를 모두 얻을 수 있다. 그리고 본 논문에서는 RCS 특성을 가지는 웜의 한 종류인 코드레드 웜에 대한 실험을 수행하여 hybrid 모델의 적합성을 보여주었다.
본 연구는 하이브리드 FRP로 보강된 철근 콘크리트 보의 구조거동 예측을 목표로 구조해석을 수행하여 기존에 발표된 실험 연구 데이터와 비교하였다. 보다 정확한 구조해석을 위하여 현존하는 다양한 부착강도 모델을 검토한 후, 이 중 콘크리트 피복분리를 예측하는 Teng and Yao model과 FRP 탈락 현상을 예측할 수 있는 Smith and Teng model을 유한요소 해석 모델에 포함시켰다. 비선형 재료 및 형상 역시 구조해석 모델에 포함되었으며 이렇게 해석된 결과는 실험결과와 비교하여 유사한 경향을 나타냈다. 그러나 다양한 하이브리드 FRP로 보강한 철근 콘크리트 보의 파괴모드를 보다 정확하게 예측하기 위하여 현존하는 수치식의 수정 및 도입이 필요하다.
The objective of this study is to validate the hybrid breakup model and the vaporization model for GDI spray analysis at vaporization and non-vaporization conditions. The atomization process is modeled by using hybrid breakup model that is composed of Linearized Instability Sheet Atomization (LISA) model and Aerodynamically Progressed Taylor Analogy Breakup (APTAB) model. The vaporization process is modeled by using modified Abramzon & Sirignano model. The exciplex fluorescence method was used for comparing the calculated results with the experimental ones. The experiment and the calculation were performed at the ambient pressures of 0.1 MPa, 0.5 MPa and 1.0 MPa and the ambient temperature of 293K and 473K.
어떤 클래스에 속한 레코드의 개수가 다른 클래스들에 속한 레코드의 개수보다 매우 많은 경우에, 이 데이터 집합을 '불균형 데이터 집합'이라고 한다. 데이터 분류에 사용되는 많은 기법들은 이러한 불균형 데이터에 대해서 저조한 성능을 보인다. 어떤 기법의 성능을 평가할 때에 적중률뿐만 아니라, 민감도와 특이도도 함께 측정하여야 한다. 고객의 이탈을 예측하는 문제에서 '유지' 레코드가 다수 클래스를 차지하고, '이탈' 레코드는 소수 클래스를 차지한다. 민감도는 실제로 '유지'인 레코드를 '유지'로 예측하는 비율이고, 특이도는 실제로 '이탈'인 레코드를 '이탈'로 예측하는 비율이다. 많은 데이터 마이닝 기법들이 불균형 데이터에 대해서 저조한 성능을 보이는 것은 바로 소수 클래스의 적중률인 특이도가 낮기 때문이다. 불균형 데이터 집합에 대처하는 과거 연구 중에는 소수 클래스를 Oversampling하여 균형 데이터 집합을 생성한 후에 데이터 마이닝 기법을 적용한 연구들이 있다. 이렇게 균형 데이터 집합을 생성하여 예측을 수행하면, 특이도는 다소 향상시킬 수 있으나 그 대신 민감도가 하락하게 된다. 본 연구에서는 민감도는 유지하면서 특이도를 향상시키는 모델을 개발하였다. 개발된 모델은 Support Vector Machine (SVM), 인공신경망(ANN) 그리고 의사결정나무 기법 등으로 구성된 하이브리드 모델로서, Hybrid SVM Model이라고 명명하였다. 구축과정 및 예측과정은 다음과 같다. 원래의 불균형 데이터 집합으로 SVM_I Model과 ANN_I Model을 구축한다. 불균형 데이터 집합으로부터 Oversampling을 하여 균형 데이터 집합을 생성하고, 이것으로 SVM_B Model을 구축한다. SVM_I Model은 민감도에서 우수하고, SVM_B Model은 특이도에서 우수하다. 입력 레코드에 대해서 SVM_I와 SVM_B가 동일한 예측치를 도출하면 그것을 최종 해로 결정한다. SVM_I와 SVM_B가 상이한 예측치를 도출한 레코드에 대해서는 ANN과 의사결정나무의 도움으로 판별 과정을 거쳐서 최종 해를 결정한다. 상이한 예측치를 도출한 레코드에 대해서는, ANN_I의 출력값을 입력속성으로, 실제 이탈 여부를 목표 속성으로 설정하여 의사결정나무 모델을 구축한다. 그 결과 다음과 같은 2개의 판별규칙을 얻었다. 'IF ANN_I output value < 0.285, THEN Final Solution = Retention' 그리고 'IF ANN_I output value ${\geq}0.285$, THEN Final Solution = Churn'이다. 제시되어 있는 규칙의 Threshold 값인 0.285는 본 연구에서 사용한 데이터에 최적화되어 도출된 값이다. 본 연구에서 제시하는 것은 Hybrid SVM Model의 구조이지 특정한 Threshold 값이 아니기 때문에 이 Threshold 값은 대상 데이터에 따라서 얼마든지 변할 수 있다. Hybrid SVM Model의 성능을 UCI Machine Learning Repository에서 제공하는 Churn 데이터 집합을 사용하여 평가하였다. Hybrid SVM Model의 적중률은 91.08%로서 SVM_I Model이나 SVM_B Model의 적중률보다 높았다. Hybrid SVM Model의 민감도는 95.02%이었고, 특이도는 69.24%이었다. SVM_I Model의 민감도는 94.65%이었고, SVM_B Model의 특이도는 67.00%이었다. 그러므로 본 연구에서 개발한 Hybrid SVM Model이 SVM_I Model의 민감도 수준은 유지하면서 SVM_B Model의 특이도보다는 향상된 성능을 보였다.
우리나라의 경제 성장과 도로 환경의 변화를 통해 국내 자동차 시장이 성장하였으나, 이로 인해 교통사고율 또한 증가하였고, 인명 피해가 심각한 수준이다. 이에 따라, 정부에서는 교통사고 데이터를 개방하고 문제를 해결하기 위한 정책을 수립 및 추진 중이다. 본 논문에서는 교통사고 데이터를 이용하여 클래스의 불균형을 해소하고, Hybrid Model 구축을 통한 교통사고 예측을 위해 원본 교통사고 데이터와 Sampling을 수행한 데이터를 학습 데이터로 사용한다. 두 학습데이터에 연관규칙 학습기법인 FP-Growth 알고리즘을 이용하여 교통사고 상해 심각도와 연관된 패턴을 학습한다. 두 학습 데이터의 연관 패턴을 분석을 통해 같은 연관된 패턴을 추출하고 의사결정트리와 다항 로지스틱 회귀분석기법에 연관된 속성에 가중치를 부여하여 융합형 Hybrid Model을 구축하고 교통사고 피해자 상해 심각도를 예측하는 방법에 대해 제안한다.
The objective of our study is to analyze the behavior of bonded, riveted and hybrid (bonded / riveted) steel / steel assemblies by tensile tests and to show the advantage of a hybrid assembly over other processes. the finite element method with the ABAQUS numerical code was used to model the fracture behavior of the different assemblies. Cohesive zone models (CZM) have been adopted to model crack propagation in bonded joints using a bilinear tensile separation law implemented in the ABAQUS finite element code. The riveted assemblies were modeled with the XFEM damage method identified in this ABAQUS numerical code. Both CZM and XFEM methods are combined to model hybrid assemblies. The results are consistent with the experimental results and make it possible to guarantee the validity of the applied numerical model. The use of a hybrid assembly shows a high resistance compared to other conventional methods, where the number of rivets has been highlighted. The use of the hybrid assembly improves mechanical strength and increases service life compared to a single lap joint and a riveted joint.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.