• 제목/요약/키워드: Hybrid Material

검색결과 1,167건 처리시간 0.026초

원형 전자빔과 지파 하이브리드 모드의 상호연구 (A Study of Solid Electron Beam and Slow Wave Hybrid Mode Introduction)

  • 김원섭;김종만
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.392-393
    • /
    • 2009
  • The study is aimed at studying a weakly relativistic oversized BWO with a Bragg reflector entrance of SWS. The Bragg reflector reflects microwaves, while it is open for beam propagations. By changing the boundary condition at the beam entrance, the effect of the Bragg reflector on the BWO performance is examined.

  • PDF

Hybrid Vibration Control of Smart Laminated Composite Beams using Piezoelectric and Viscoelastic Material

  • Kang, Young-Kyu
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제4권1호
    • /
    • pp.37-42
    • /
    • 2003
  • Active control of flexural vibrations of smart laminated composite beams has been carried out using piezoceramic sensor/actuator and viscoelastic material. The beams with passive constrained layer damping have been analyzed by formulating the equations of motion through the use of extended Hamilton's principle. The dynamic characteristics such as damping ratio and modal damping of the beam are calculated for various fiber orientations by means of iterative complex eigensolution method. This paper addresses a design strategy of laminated composite under flexural vibrations to design structure with maximum possible damping capacity.

a-Se 기반의 혼합형 X-선 검출기에서 유전층의 누설전류 저감효과 (The dark-current and X -ray sensitivity measurement of hybrid digital X-ray detector having dielectric layer structure)

  • 석대우;박지군;조진욱;이동길;문치웅;남상희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 춘계학술대회 논문집 센서 박막재료 반도체재료 기술교육
    • /
    • pp.31-34
    • /
    • 2002
  • In this paper, the electric properties of amophous selenium multilayer samples has been investigated. In order to develop the hybrid flat-panel digital· X-ray image detector, we measured and analyzed their performance parameters such as the X -ray sensitivity and dark-current for a amophous selenium multilayers X-ray detector with a phosphor layer, The hybrid digital X-ray image detector can be constructed by integrating a phosphor layer (or a scintillative layer) that convert X-ray to a light on a-Se photoconduction mulilayers that convert a light to electrical signal. As results, the dielectric materials such as parylene between the phosphor layer and the top electrode may reduce the dark-current of the samples. Amorphous selenium multilayers having dielectric layer(parylene) has characteristics of low dark-current, high X-ray sensitivity. So we can acquired a enhanced signal to noise ratio. In this paper offer the method can reduce the dark-current in the hybrid X-ray detector.

  • PDF

CS졸을 이용한 Poly(epoxy-imide)-나노 Silica 하이브리드 필름의 합성과 유전특성 (Synthesis of Poly(epoxy-imide)-Nano Silica Hybrid Film via CS Sol-gel Process and Their Dielectric Properties)

  • 한세원;한동희;강동필;강영택
    • 한국전기전자재료학회논문지
    • /
    • 제20권1호
    • /
    • pp.35-40
    • /
    • 2007
  • The new PEI(poly(epoxy-imide))-nano Silica film has been synthesized via in situ CS sol process, and the chemical bonding and microstructure of nano silica dispersed in resin were examined by FT-IR, TAG and SEM. The dielectric properties of these hybrid films over a given temperature and frequency ranges have been studied in a point of view of stable chemical bonding of nano Silica filler. The results from IR spectra and SEM photograph indicated that PEI-Silica hybrid film prepared with nano CS sol process has been synthesized in uniform and chemical bonding. The decrease property of dielectric constant with CS content, tangent loss consistent of given frequency and temperature has been explained in terms of the chain movement of polymer through chemical bonging and size effect of nano silica. The new PEI-CS sol hybrid film with such stable chemical and dielectric properties was expected to be used as a high functional coating application in ET, IT and electric power products.

Al 7075/CFRP 샌드위치 복합재료의 강도 및 손상특성에 대한 비파괴 평가 (Nondestructive Evaluation on Strength Characteristic and Damage Behavior of Al 7075/CFRP Sandwich Composite)

  • 이진경;윤한기;이준현
    • 대한기계학회논문집A
    • /
    • 제26권11호
    • /
    • pp.2328-2335
    • /
    • 2002
  • A hybrid composite material has many potential usage due to the high specific strength and the resistance to fatigue, when compared to other composite materials such as fiber reinforced plastic(FRP) and metal matrix composite(MMC). However, the fracture mechanism of hybrid composite material is extremely complicated because of the bonding structure of metals and FRP. In this study, Al 7075 sheets and carbon epoxy preprags were used to fabricate the hybrid composite. Recently, nondestructive technique has been used to evaluate the fracture mechanism of these composite materials. AE technique was used to clarify the microscopic damage behavior and failure mechanism of A17075/CFRP hybrid composite. It was found that AE paralneters such as AE event, energy and amplitude were effective to evaluate the failure process of Al 7075/CFRP composite. In addition, the relationship between the AE signal and the characteristics of fracture surface using optical microscope was discussed.

마그네슘 합금 AZ31B 판재를 이용한 자동차 하이브리드 후드 개발 프로세스 (Process Development for Automotive Hybrid Hood using Magnesium Alloy AZ31B Sheet)

  • 장동환
    • 소성∙가공
    • /
    • 제20권2호
    • /
    • pp.160-166
    • /
    • 2011
  • Weight reduction while maintaining functional requirements is one of the major goals in the automotive industry. The use of lightweight magnesium alloys offers great potential for reducing weight because of the low density of these alloys. However, the formability and the surface quality of the final magnesium alloy product for auto-body structures are not acceptable without a careful optimization of the design parameters. In order to overcome some of the main formability limitations in the stamping of magnesium alloys, a new approach, the so-called "hybrid technology", has been recently proposed for body-in-white structural components. Within this approach, necessary level of mechanical joining can be obtained through the use of lightweight material-steel adhesion promoters. This paper presents the development process of an automotive hybrid hood assembly using magnesium alloy sheets. In the first set of material pairs, the selected materials are magnesium alloy AZ31B alloy and steel(SGCEN) as inner and outer panels, respectively. In order to optimize the design of the inner panel, the stamping process was analyzed with the finite element method (FEM). Laser welding by CW Nd:YAG were used to join the magnesium alloy sheets. Based on the simulation results and mechanical test results of the joints, the determination of die design variables and their influence on formability were discussed. Furthermore, a prototype based on the proposed design was manufactured and the static stiffness test was carried out. The results demonstrate the feasibility of the proposed hybrid hood with a weight reduction of 25.7%.

수직형 복합 연삭시스템 베드의 동특성 해석에 관한 연구 (A Study on the Modal Analysis of Hybrid Vertical Grinding System Bed)

  • 최승건;김성현;최웅걸;신현정;이은상;김규동
    • 한국기계가공학회지
    • /
    • 제12권5호
    • /
    • pp.50-56
    • /
    • 2013
  • Machine tools are the cores of industrial development in recent period. It is difficult to develop a system which can do cutting and grinding process in the one system. Hybrid Vertical Grinding System is capable of processing in a single apparatus cutting or grinding. The modal analysis and structural analysis for the development of Hybrid Vertical Grinding System is the first time of domestic work. In this study, Hybrid Vertical Grinding System bed was designed and analyzed by using SS401 and FC300 as materials. And by using Finite Element Methods, the design and material of the bed was analysed. Finally, we can make a better choice of structure and material of the bed by comparing the analysis results.

LCD Color Filter용 Hybrid Azo Colorants 합성 및 특성 연구 (Synthesis and Characterization of Hybrid Azo Colorants for LCD Color Filter)

  • 최우근;정연태
    • 한국전기전자재료학회논문지
    • /
    • 제26권7호
    • /
    • pp.528-533
    • /
    • 2013
  • We focused on the development of red azo colorants with high thermal stability and good solubility for LCD color filter in this research. For the synthesis of hybrid azo colorants, we used the couplers of aniline, naphthol and benzoimidazol functional group. The synthesized hybrid azo colorants were charaterized by using NMR, UV/visible spectroscopy, FT-IR, EA and TGA. They represented the maximum absorption wavelengths which are longer than 500 nm in UV/visible spectrum. So they were confirmed to be suitable for red colorants of LCD color filter. Azo compound (1a, 1b) with aniline functional group had good solubility in organic solvents such as acetone, methanol, chloroform and PGMEA. Moreover azo compounds (1c, 1d and 1e) with naphthol and benzoimidazolone functional group gave excellent thermal stability higher than $250^{\circ}C$ in TGA thermograms.

금속-복합재료 하이브리드 구조체 재활용 프로세스 개발 (Process Development of Metal-Composite Hybrid Structures)

  • 황희윤
    • Composites Research
    • /
    • 제34권3호
    • /
    • pp.167-173
    • /
    • 2021
  • 최근 금속-복합재료 하이브리드 구조는 설계 유연성과 우수한 기계적 특성 때문에 자동차나 항공기 등 다양한 분야에 응용이 가능한 매우 매력적인 소재 시스템이 되었다. 한편, 버려지는 재료를 줄이고 환경 오염을 막기 위한 재활용이 아주 중요해졌다. 많은 국가에서 자동차나 전자제품의 재활용 규정을 만들어 적용하고 있으나, 금속-복합재료 하이브리드 구조는 아직 연구개발 및 응용의 초기 단계로 재활용에 대해서는 충분히 고려되지 않고 있다. 본 연구에서는 재활용 업체에서 도입할 수 있는 금속-복합재료 하이브리드 구조의 재활용 프로세스를 개발하고 최적화하였다.

압전 폴리머를 접목한 초전-자기-압전 발전소자의 출력 특성 향상 연구 (Enhancement of Power Generation in Hybrid Thermo-Magneto-Piezoelectric-Pyroelectric Energy Generator with Piezoelectric Polymer)

  • 백창민;이건;류정호
    • 한국전기전자재료학회논문지
    • /
    • 제36권6호
    • /
    • pp.620-626
    • /
    • 2023
  • Energy harvesting technology, which converts wasted energy sources in everyday life into usable electric energy, is gaining attention as a solution to the challenges of charging and managing batteries for the driving of IoT sensors, which are one of the key technologies in the era of the fourth industrial revolution. Hybrid energy harvesting technology involves integrating two or more energy harvesting technologies to generate electric energy from multiple energy conversion mechanisms. In this study, a hybrid energy harvesting device called TMPPEG (thermo-magneto-piezoelectric-pyroelectric energy generator), which utilizes low-grade waste heat, was developed by incorporating PVDF polymer piezoelectric components and optimizing the system. The variations in piezoelectric output and thermoelectric output were examined based on the spacing of the clamps, and it was found that the device exhibited the highest energy output when the clamp spacing was 2 mm. The voltage and energy output characteristics of the TMPPEG were evaluated, demonstrating its potential as an efficient hybrid energy harvesting component that effectively harnesses low-grade waste heat.