• Title/Summary/Keyword: Hybrid Intelligent Method

검색결과 186건 처리시간 0.136초

지능형 로봇 시스템에서 하이브리드 실루엣 추출 방법을 이용한 인간의 몸 추출 (Extraction of Human Body Using Hybrid Silhouette Extraction Method in Intelligent Robot System)

  • 김문환;주영훈;박진배;조영조;지수영;김혜진
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2005년도 추계학술대회 학술발표 논문집 제15권 제2호
    • /
    • pp.257-260
    • /
    • 2005
  • This paper discusses a human body extraction method for mobile robot system. The skeleton features are used to analyze human motion and pose estimation. The intelligent robot system requires more robust silhouette extraction method because it has internal vibration and low resolution. The new hybrid silhouette extraction method is proposed to overcome this constrained environment. Finally, the experimental results show the superiority of the Proposed method.

  • PDF

하이브리드 기법을 이용한 가스터빈 엔진의 압축기 성능선도 생성에 관한 연구 (A Study on Compressor Map Generation of a Gas Turbine Engine Using Hybrid Intelligent Method)

  • 공창덕;고성희;기자영
    • 한국추진공학회지
    • /
    • 제10권4호
    • /
    • pp.54-60
    • /
    • 2006
  • 본 연구에서는 실험을 통하여 획득한 데이터로부터 유전 알고리즘(Genetic Algorithms)과 스케일링기법(Scaling Method)을 이용한 하이브리드 기법(Hybrid Method)으로 압축기 성능선도를 생성하는 방법을 제안하였다. 기 수행한 연구에서 유전 알고리즘만 이용할 경우 압축기 성능선도 생성 시 서지점들과 쵸크점들을 예측하는데 불분명한 단점이 있어 기존의 구성품 성능선도 생성에 널리 사용하는 스케일링 기법을 보완적으로 이용하여 보다 정확한 압축기 성능선도를 생성하였다.

지능형 로봇 시스템에서 하이브리드 실루엣 추출 방법을 이용한 인간의 몸 추출 (Extraction of Human Body Using Hybrid Silhouette Extraction Method in Intelligent Robot System)

  • 김문환;주영훈;박진배;조영조;지수영;김혜진
    • 한국지능시스템학회논문지
    • /
    • 제15권7호
    • /
    • pp.852-857
    • /
    • 2005
  • 본 논문은 지능형 로봇 시스템을 위한 인간 몸의 하이브리드 실루엣 추출 기법을 제안한다. 지능형 로봇은 내부적인 진동과 낮은 해상도로 인해 강인한 실루엣 추출을 필요로 한다. 이를 극복하기 위해서 본 논문에서는 하이브리드 실루엣 추출 기법을 제안하였다. 하이브리드 실루엣은 영상간의 공간차 및 시간차 정보를 고려 생성되며 움직임 영역 모델을 통해 두 정보간의 중요성에 가중치를 준다. 최종적으로 실험결과를 통해 제안된 기법의 우수성을 확인하였다.

지능형 하이브리드 자기 동조 기법을 이용한 강건 제어기 설계 (PThe Robust Control System Design using Intelligent Hybrid Self-Tuning Method)

  • 권혁창;하상형;서재용;조현찬;전홍태
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 춘계 학술대회 학술발표 논문집
    • /
    • pp.325-329
    • /
    • 2003
  • This paper discuss the method of the system's efficient control using a Intelligent hybrid algorithm in nonlinear dynamics systems. Existing neural network and genetic algorithm for the control of non-linear systems work well in static states. but it be not particularly good in changeable states and must re-learn for the control of the system in the changed state. This time spend a lot of time. For the solution of this problem we suggest the intelligent hybrid self-tuning controller. it includes neural network, genetic algorithm and immune system. it is based on neural network, and immune system and genetic algorithm are added against a changed factor. We will call a change factor an antigen. When an antigen broke out, immune system come into action and genetic algorithm search an antibody. So the system is controled more stably and rapidly. Moreover, The Genetic algorithm use the memory address of the immune bank as a genetic factor. So it brings an advantage which the realization of a hardware easy.

  • PDF

하이브리드 시스템을 이용한 이동로봇의 지능적 동작과 자율주행 (Intelligent Motion and Autonomous Maneuvering of Mobile Robots using Hybrid System)

  • 이용미;임준홍
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.152-152
    • /
    • 2000
  • In this paper, we propose a new approach to intelligent motion and autonomous maneuvering of mobile robots using hybrid system. In high Level, the discrete states are defined by using the sensor-based search windows and the reference motions of a mobile robot as a low vevel are specified in the abstracted motions, The mobile robots can perform both the motion planning and autonomous maneuvering with obstacle avoidance in indoor navigation problem. Simulation and experimental results show that hybrid system approach is an effective method for the autonomous maneuvering in indoor environments.

  • PDF

Hybrid Self Organizing Map using Monte Carlo Computing

  • 전성해;박민재;오경환
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2006년도 춘계학술대회 학술발표 논문집 제16권 제1호
    • /
    • pp.381-384
    • /
    • 2006
  • Self Organizing Map(SOM) is a powerful neural network model for unsupervised loaming. In many clustering works with exploratory data analysis, it has been popularly used. But it has a weakness which is the poorly theoretical base. A lot more researches for settling the problem have been published. Also, our paper proposes a method to overcome the drawback of SOM. As compared with the presented researches, our method has a different approach to solve the problem. So, a hybrid SOM is proposed in this paper. Using Monte Carlo computing, a hybrid SOM improves the performance of clustering. We verify the improved performance of a hybrid SOM according to the experimental results using UCI machine loaming repository. In addition to, the number of clusters is determined by our hybrid SOM.

  • PDF

지능형 최적화 기법 이용한 하이브리드 자기부상 시스템의 설계 (Design of Hybrid Magnetic Levitation System using Intellignet Optimization Algorithm)

  • 조재훈;김용태
    • 전기학회논문지
    • /
    • 제66권12호
    • /
    • pp.1782-1791
    • /
    • 2017
  • In this paper, an optimal design of hybrid magnetic levitation(Maglev) system using intelligent optimization algorithms is proposed. The proposed maglev system adopts hybrid suspension system with permanent-magnet(PM) and electro magnet(EM) to reduce the suspension power loss and the teaching-learning based optimization(TLBO) that can overcome the drawbacks of conventional intelligent optimization algorithm is used. To obtain the mathematical model of hybrid suspension system, the magnetic equivalent circuit including leakage fluxes are used. Also, design restrictions such as cross section areas of PM and EM, the maximum length of PM, magnetic force are considered to choose the optimal parameters by intelligent optimization algorithm. To meet desired suspension power and lower power loss, the multi object function is proposed. To verify the proposed object function and intelligent optimization algorithms, we analyze the performance using the mean value and standard error of 10 simulation results. The simulation results show that the proposed method is more effective than conventional optimization methods.

Safety Critical 시스템의 센서 결함 허용을 위한 Kalman Hybrid Redundancy 개발 (Development of Kalman Hybrid Redundancy for Sensor Fault-Tolerant of Safety Critical System)

  • 김만호;이석;이경창
    • 제어로봇시스템학회논문지
    • /
    • 제14권11호
    • /
    • pp.1180-1188
    • /
    • 2008
  • As many systems depend on electronics, concern for fault tolerance is growing rapidly in the safety critical system such as intelligent vehicle. In order to make system fault tolerant, there has been a body of research mainly from aerospace field including predictive hybrid redundancy by Lee. Although the predictive hybrid redundancy has the fault tolerant mechanism to satisfy the fault tolerant requirement of safety crucial system such as x-by-wire system, it suffers form the variability of prediction performance according to the input feature of system. As an alternative to the prediction method of predictive hybrid redundancy for robust fault tolerant, Kalman prediction has attracted some attention because of its well-known and often-used with its structure called Kalman hybrid redundancy. In addition, several numerical simulation results are given where the Kalman hybrid redundancy outperforms with predictive smoothing voter.

ASMOD와 혼합 곡선 근사법을 이용한 SAC의 생성 (Generation of SAC using a ASMOD and a Hybrid curve approximation)

  • 김현철;이경선;김수영
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1997년도 추계학술대회 학술발표 논문집
    • /
    • pp.435-438
    • /
    • 1997
  • This paper presents the process generating a SAC(Sectional Area Cure) by using ASMOD(Adaptive Spline Modeling of Observation Data). That is, we define SACs of real ships as B-spline curves by a hybrid cure approximation(which is the combination method of a B-spline fitting method and a genetic algorithm) and accumulate a database of control points. Then we let ASMOD learn from the correlation principal dimensions with control points.

  • PDF

Application of Genetic Algorithm to Hybrid Fuzzy Inference Engine

  • Park, Sae-hie;Chung, Sun-tae;Jeon, Hong-tae
    • 한국지능시스템학회논문지
    • /
    • 제2권3호
    • /
    • pp.58-67
    • /
    • 1992
  • This paper presents a method on applying Genetric Algorithms(GA), which is a well-know high performance optimizing algorithm, to construct the self-organizing fuzzy logic controller. Fuzzy logic controller considered in this paper utilized Sugeno's hybrid inference method. which has an advantage of simple defuzzification process in the inference engine. Genetic algorithm is used to find the iptimal parameters in the FLC. The proposed approach will be demonstrated using 2 d. o. f robot manipulator to verify its effectiveness.

  • PDF