• Title/Summary/Keyword: Hybrid Green integral equation

Search Result 10, Processing Time 0.025 seconds

Prediction of Wave Energy Absorption Efficiency of a Flp-Harbour Device by a Hybrid Integral Equation (Hybrid 적분방정식을 사용한 Flap-Harbour 복합체 파 에너지 흡수효율 추정)

  • 김현주
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.2
    • /
    • pp.1-6
    • /
    • 2000
  • Wave energy absorption by a flap equipped with a harbor in a water of finite depth is studied. The wave potential is calculated by a hybrid integral equation consisting of Green integral equations associated with Rankine and Kelvin Green functions. The absorbed wave energy is calculated by both the near-field and far-field methods. The present methods can be used for the design of a flap-harbor wave energy absorber since the numerical results by the two methods are in good agreement.

  • PDF

A Study on the Multiple OWC Chamber Motion in Waves (다중 OWC챔버 구조물의 운동해석)

  • Hong, Do-Chun;Hong, Sa-Young;Hong, Seok-Won
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.202-205
    • /
    • 2002
  • The motion of a floating body with multiple owe chambers in waves is studied taking account of fluctuating air pressure in the chambers. The atmospheric pressure drop in one chamber is interrelated with the drop in the other chamber. Velocity potential in the water due to the free surface oscillating pressure patches is calculated by making use of the hybrid Green integral equation. The chamber motion in the frequency domain is calculated for various values of parameters related to the atmospheric pressure drop in the multiple chambers.

  • PDF

Study of Nearshore OWC Wave Power Absorbing Breakwater (연안고정식 파력발전 겸 OWC 방파제 성능연구)

  • Hong, Do-Chun;Shin, Seung-Ho;Hong, Key-Yong;Hong, Seok-Won
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.465-468
    • /
    • 2006
  • The wave power absorbing performance of a bottom-mounted oscillating water column (OWC) chamber structure is studied. The potential problem inside the chamber is solved by making use of the Green integral equation associated with the Rankine Green function while the outer problem with the Kelvin Green function taking account of fluctuating air pressure in the air chamber. The absorbed wave power, wave elevation inside the chamber, reflection coefficient and wave loads are calculated for various values of a parameter related to the fluctuating air pressure. The present methods can also be used for the design of a OWC breakwater which can absorb and reflect the incoming wave energy at the same time.

  • PDF

Numerical Study of Transmisson and Reflection Coefficients of a BBDB-Type Floating Breakwater (공기챔버형 부소파제의 투과 및 산란파 해석)

  • Hong, Do-Chun;Kim, Hyeon-Ju;Hong, Sa-Young
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.1 s.139
    • /
    • pp.18-23
    • /
    • 2005
  • The transmission and reflection coefficiencies of a BBDB-type floating breakwater in water of finite depth are studied taking account of fluctuating air pressure in the air chamber. The wave potential is calculated by a hybrid integral equation consisting of a Green integral equations associated with the Rankiue Green function inside the BBDB and the Kelvin Green function outside. The transmission and reflection coefficients of the breakwater are obtained directly from the potential solution in the outer region.

A Study on Hybrid Finite Element Method for Solving Electromagnetic Wave Scattering (전자파 산란문제를 해결하기 위한 혼합 유한요소법에 관한 연구)

  • 박동희;강찬석;안정수
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.4 no.1
    • /
    • pp.38-43
    • /
    • 1993
  • A Hybrid Finite Element Method(HFEM) is applied to solve the electrormagnetic scattering from multi-layered dielectric cylinders. An unbounde region is divided into local boundary regions where a practical differential equation solution is obtained, with the remaining unbounded region represented by a boundary integral equation. If sources, media inhomogeneities, and anisotropies are local, a surgace may be defined to enclose them. Therefore the integral region so defined is bounded, and differential techniques may be used there. Also, in the re- maining unbounded region a boundary integral equation may be formulated using only a simple free - space green's function. Therefore, The local boundary is represented by a boundary - value problem with boundary conditions and solved by the finite element method. The advantage of the proposed method is simple and efficient in the work of electromagnetic scattering. The validity of the results have been verified by comparing results of other method(boundary element method). Examples has been presented to calculate the scattered fields of lossy dielectric cylinders of arbitray cross section.

  • PDF

An Analysis of Transmission Line Structure by Combining Image Mode and Galerkin Methods (영상-모드 및 Galerkin법을 이용한 전송선 문제 해석)

  • 신규현;정현교;한송엽
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.12
    • /
    • pp.1296-1301
    • /
    • 1991
  • This paper presents a hybrid image mode Galerkin method for the analysis of the transmission line structures suspended between infinite parallel ground planes. A Green's function that consists of numerically accelerated image mode terms is developed, which is used in boundary integral equation. Transmission lines of arbitrary cross section are analyzed using Galerkin's method. Two kinds of configurations of transmission lines are studied in sample problems.

  • PDF

On the static limit of Helmhortz equation for the acoustic wave scattering in a waveguide (도파관 내의 음파산란 해석에 있어서 Helmhortz 방정식의 정적 한계에 관한 연구)

  • Jung, Hyun-Kyo;Choi, Kyoung
    • Journal of Industrial Technology
    • /
    • v.9
    • /
    • pp.79-85
    • /
    • 1989
  • In this paper, the static limit of Helmhortz equation is discussed in the analysis of acoustic wave scattering in a waveguide. Boundary integral equation method is used to formulate the scattering process in the exerior of the scatterer and finite element method in the interior of the scatterer. And hybrid Ray-Mode Method is used the provide the Green's function of the waveguide. The proposed algorithm is applied to a sample poblem with arbitrary scatterer in a waveguide. The results are compared with those of Laplace's equation which is the governing equation in the static problems.

  • PDF

On the Static Limit of Helmholtz Equation for the Wave Scattering in a Waveguide (도파관내의 파동산란 해석에 있어서 Helmholtz방정식의 정적 한계에 관한 연구)

  • Jung, Hyun-Kyo;Park, Kyung;Hahn, Song-Yop
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.1
    • /
    • pp.89-94
    • /
    • 1992
  • In this paper, the static limit of Helmholtz equation is discussed for the analysis of wave scattering in a wave scattering in a waveguide. Boundary integral equation method is used to formulato the scattering process in the exterior of the scatterer and finite element method in the interior of the scatterer. And hybrid ray-mode method is used to provide the Green's function in the waveguide. The proposed algorithm is applied algarithm is applied to a sample problem with arbitrary scatterer in a waveguide. The results are compared with those of static analysis.

Prediction of Wave Energy Absorption Efficiency and Wave Loads of a Three-Dimensional Bottom-Mounted OWC Wave Power Device (착저식 OWC 파력발전장치의 파에너지 흡수효율 및 파랑하중 계산)

  • Hong, Do-Chun;Hong, Key-Yong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.1
    • /
    • pp.47-52
    • /
    • 2010
  • The wave energy absorption efficiency and the first-order and the time-mean second-order wave loads of a three-dimensional bottom-mounted oscillating water column (OWC) chamber structure are studied. The potential problem is solved by making use of a hybrid Green integral equation associated with the finite-waterdepth free-surface Green function outside a twin chamber and the Rankine Green function inside taking account of the fluctuating air pressure inside the chamber. Numerical results of the primary wave energy converting efficiency and the oscillating and steady wave loads of a three-dimensional bottom-mounted OWC pilot plant have been presented.

Wave Energy Absorption Efficiency of Pneumatic Chamber of OWC Wave Energy Converter (진동수주형 파력발전장치 공기실의 파력에너지 흡수효율)

  • Hong, Key-Yong;Shin, Seung-Ho;Hong, Do-Chun
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.3
    • /
    • pp.173-180
    • /
    • 2007
  • Oscillating wave amplitude in a bottom-mounted OWC chamber designed for wave energy converter is investigated by applying characteristic wave conditions in Korean coastal water. The effects of shape parameters of OWC chamber in a view of wave energy absorbing capability are analyzed. Both experimental and numerical approaches are adopted and their results are compared to optimize the shape parameters which can result in a maximum power production under given wave distribution. The experiment was carried out in a wave flume under 2-D assumption of OWC chamber. The numerical scheme employed a hybrid Green integral equation which adopts the Rankine Green function inside chamber to take account of fluctuating air pressure, while it uses the Kelvin Green function in outer domain. Air duct diameter, chamber width, and submerged depths of front skirt and back wall of chamber changes the magnitude and peak frequency of wave absorption significantly.

  • PDF