• Title/Summary/Keyword: Hybrid Generation

Search Result 828, Processing Time 0.03 seconds

The Application of Monitoring System Methods of Photovoltaic-Wind Power Generation for Railway Switching Point Heating Using LabVIEW (LabVIEW를 이용한 철도 선로전환기 융설용 태양광-풍력 발전 모니터링 시스템의 적용 방법)

  • Kim, Dae-Nyeon;Kim, Deok-Hyun;Choi, Jeong-Won
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.10
    • /
    • pp.9-14
    • /
    • 2013
  • The monitoring system is an absolutely required system for improving a performance to consider the situation for the hybrid generation of the photovoltaic (PV) and wind power (WP) energy experimental research complex. This system is to monitor with the railroad switching point heating system using LabVIEW to the hybrid generation of the PV and WP. The monitoring system of this paper is a program monitoring the hour, day and total of the voltage and current that made from the hybrid generation of PV and WP. In experiment, we acquired the power data according to time at the day of PV and WP. We have confirmed the possibility of the real time monitoring system using LabVIEW with the railroad switching point heating system as the hybrid generation of the PV and WP.

Optimal Allocation Method of Hybrid Active Power Filters in Active Distribution Networks Based on Differential Evolution Algorithm

  • Chen, Yougen;Chen, Weiwei;Yang, Renli;Li, Zhiyong
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1289-1302
    • /
    • 2019
  • In this paper, an optimal allocation method of a hybrid active power filter in an active distribution network is designed based on the differential evolution algorithm to resolve the harmonic generation problem when a distributed generation system is connected to the grid. A distributed generation system model in the calculation of power flow is established. An improved back/forward sweep algorithm and a decoupling algorithm are proposed for fundamental power flow and harmonic power flow. On this basis, a multi-objective optimization allocation model of the location and capacity of a hybrid filter in an active distribution network is built, and an optimal allocation scheme of the hybrid active power filter based on the differential evolution algorithm is proposed. To verify the effect of the harmonic suppression of the designed scheme, simulation analysis in an IEEE-33 nodes model and an experimental analysis on a test platform of a microgrid are adopted.

A design of Hybrid power generation system for Ocean facilities (해양시설물용 하이브리드 발전시스템 설계)

  • Jung, Sung-Young;Oh, Jin-Seok
    • Journal of Navigation and Port Research
    • /
    • v.33 no.6
    • /
    • pp.381-385
    • /
    • 2009
  • Generally power system of ocean facility composes a solar generation system.The power to be generated by the solar system is changed according to the amount of sunlight of weather conditions. Output power of solar system is decreased with weather condition such as cloudy day and rainy day. And the power shortage of the ocean facility can occur due to the lack of solar energy. To solve this problem, this paper proposes the power control system for solar-wave hybrid system Wave generation system consists of wells turbine and permanent magnet synchronous generator(PMSG). This propose system set the specific area and measures the solar generation power and wave generation power. As a result of experiment, the solar power is a more static source than wave power, but the wave power provides energy during periods of no sunshine. The power characteristic of propose hybrid system have been obtained high reliability than a solar generation system.

Design and Implementation of Modified Current Source Based Hybrid DC - DC Converters for Electric Vehicle Applications

  • Selvaganapathi, S.;Senthilkumar, A.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.2
    • /
    • pp.57-68
    • /
    • 2016
  • In this study, we present the modern hybrid system based power generation for electric vehicle applications. We describe the hybrid structure of modified current source based DC - DC converters used to extract the maximum power from Photovoltaic (PV) and Fuel Cell system. Due to reduced dc-link capacitor requirement and higher reliability, the current source inverters (CSI) better compared to the voltage source based inverter. The novel control strategy includes Distributed Maximum Power Point Tracking (DMPPT) for photovoltaic (PV) and fuel cell power generation system. The proposed DC - DC converters have been analyzed in both buck and boost mode of operation under duty cycle 0.5>d, 0.5<d<1 and 0.5<d for capable electric vehicle applications. The proposed topology benefits include one common DC-AC inverter that interposes the generated power to supply the charge for the sharing of load in a system of hybrid supply with photovoltaic panels and fuel cell PEM. An improved control of Direct Torque and Flux Control (DTFC) based induction motor fed by current source converters for electric vehicle.In order to achieve better performance in terms of speed, power and miles per gallon for the expert, to accepting high regenerative braking current as well as persistent high dynamics driving performance is required. A simulation model for the hybrid power generation system based electric vehicle has been developed by using MATLAB/Simulink. The Direct Torque and Flux Control (DTFC) is planned using Xilinx ISE software tool in addition to a Modelsim 6.3 software tool that is used for simulation purposes. The FPGA based pulse generation is used to control the induction motor for electric vehicle applications. FPGA has been implemented, in order to verify the minimal error between the simulation results of MATLAB/Simulink and experimental results.

Measurement of local wind and solar radiation for a hybrid power generation system design, Busan, Korea

  • Hwang, Kwang-Il
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.7
    • /
    • pp.799-806
    • /
    • 2013
  • As a first step to develop the hybrid power generation system, on this study, the time-variable resources of wind and solar radiation of Yeongdo, Busan, Korea had been measured during June and July 2013. And the quantity of generated wind power and solar photovoltaic had also been measured during the same period. It is found out that the wind mainly flew from southwest at the average speed of 2 m/s during 2 months. And it is clear that, because of the low wind velocity, the wind quality to generate the power seems not enough at this area. Meanwhile solar radiation was measured every daytime (6:00~19:00) and the peak solar radiation occurred around 12:00~14:00. And it is clear that the time-based variations of quantity of generated power were proportional to the variations of these resources, respectively. As a proposal, these 2 natural energies can be combined as resources of a hybrid system, because these 2 patterns are not overlapped so much on time base.

A Study on Power Balance Control for Hybrid Power System with Common DC Link (공통 DC단을 갖는 복합발전시스템을 위한 전력균형제어에 관한 연구)

  • Jeong B. H.;Cho J. S.;Gho J. S.;Choe G. H.;Kim E. S.;Lee C. S.
    • Proceedings of the KIPE Conference
    • /
    • 2002.11a
    • /
    • pp.181-185
    • /
    • 2002
  • This paper discusses power balance control of photovoltaic/wind/diesel hybrid generation system for remote area power supplies. There are many control methods for hybrid power system. Among others, it must be adopted that the control method to guarantee a stable balance between supply and demand, regardless of the fluctuation of generator power by atmospheric changes. In this paper, it Is proposed that a hybrid generation system has a power-balanced controller to equilibrate generation power with a load demand, which is composed of DC bus-type power systems. To execute power balance control, it is assumed that all of power generators have a equivalent current-source characteristics. Through the results of simulation, the proposed scheme was verified.

  • PDF

Improved Hybrid MIMO Scheme for Next Generation Communication System (차세대 통신 시스템을 위한 향상된 하이브리드 MIMO 기법)

  • Jo, Bong-Gyun;Han, Dong-Seog
    • Journal of Broadcast Engineering
    • /
    • v.16 no.6
    • /
    • pp.969-976
    • /
    • 2011
  • In this paper, a terrestrial transmission system is proposed for the next generation digital television (DTV) system by applying a hybrid multi-input multi-output (MIMO) technology based on linear dispersion codes (LDCs). The digital video broadcasting-2nd generation terrestrial (DVB-T2) system adopted a space time block code (STBC) for improving receive performance. However, the data rate of STBC is not increased in proportion to the transmitter. The hybrid STBC scheme utilizes several STBC transmission blocks for increasing data rate. It is possible to increase the data rate and performance in the receiver by utilizing LDC. The performances of the proposed and conventional hybrid STBC schemes are evaluated through computer simulations.

Thermoelectric Power Generation System with Loop Thermosyphon (루프형 열사이폰을 이용한 열전발전 시스템)

  • Kim, Sun-Kook;Rhi, Seok-Ho;Won, Byung-Chul;Kim, Dae-Hyun;Lee, Chung-Gu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.9
    • /
    • pp.718-721
    • /
    • 2009
  • A new progressive advanced approach (Loop thermosyphon Thermoelectric Power generation System) is suggested to optimize heat recovery ability from vehicle exhaust gas. As an initial look at device feasibility, the present new TE system adopted the loop thermosyphon as a cooling heat exchanger. The TE system with loop thermosyphon was investigated in terms of working fluids, instability of system, amount of working fluid, and so on. Basically, the present experimental works have been focused on finding the optimum working condition of the system to improve thermoelectric power output and to obtain stable power generation to operate hybrid vehicles. The present experimental results with the loop thermosyphon TE module shows possibilities as an improved TE system for future thermoelectric hybrid vehicles.

Solar Thermal Hybrid Power Generation;technology review and system design (태양열복합발전 기술개발 동향 및 설계)

  • Kim, Jin-Soo;Kang, Yong-Heack;Lee, Sang-Nam;Yun, Hwan-Ki;Yu, Chang-Kyun;Kim, Jong-Kyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.684-687
    • /
    • 2007
  • Research on the solar thermal hybrid power generation technology which uses solar thermal chemical reaction has been carried out in KIER, The research covers development of solar concentration system and solar reactor for methane steam reforming reaction. This paper introduces a brief review and prospects of oversea's researches in similar areas and KIER's research progresses up to now.

  • PDF

Contactless Power Supply for DC Power Service in Hybrid Home Generation System (직류수용가 서비스를 위한 무접점 전원장치)

  • Kang, J.W.;Song, H.K.;Kim, J.H.;Kim, E.S.;Kim, Y.H.
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.104-107
    • /
    • 2007
  • Among the alternative energy sources, the solar energy is recognized as an important energy source and its application is increasing. Especially in future, the hybrid solar energy generation system with battery will be widely used as an independent distributed power generation system. In this paper, a solar power hybrid home generation system using a contact-less power supply (CPS) that can transfer an electric power without any mechanical contact by using magnetic coupling instead of the power transfer by directly supplying the DC power to the home electric system is proposed. The proposed system consists of a ZVS boost converter, a half bridge LLC resonant converter and contact-less transformer.

  • PDF