• 제목/요약/키워드: Hybrid Actuator

검색결과 168건 처리시간 0.023초

하이브리드 스마트 구조물의 진동 제어 (Vibration Control of Hybrid Smart Structures)

  • 박동원;박용군;박노준;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1996년도 춘계학술대회논문집; 부산수산대학교, 10 May 1996
    • /
    • pp.130-135
    • /
    • 1996
  • This paper presents a proof-concept investigation on the active vibration control of two hybrid smart structures (HSSs). The first one is consisting of a piezoelectric film (PF) actuator and an electro-rheological fluid(ERF) actuator, and the other is featured by a piezoceramic (PZT) actuator and a shape memory alloy (SMA) actuator. For the PF/ERF hybrid smart structure, both the increment of the damping ratios and the suppression of the tip deflections are evaluated in order to demonstrate control effectiveness of the PF actuator and ERF actuator and the hybrid actuation. For the PZT/SMA hybrid smart structure, the PZT actuator takes account of the high frequency excitation, while the SMA actuator exerts large vibration control force. The experimental results exhibit superior abilities of the hybrid actuation systems to tailor elastodynamic responses of the HSS rather than a single class of actuation system alone.

  • PDF

Shorted Turn in the Hybrid Magnet Engine Valve Actuator for Enhanced Dynamic Performance

  • Yi, Hwa Cho;Hwang, Ki Il;Kim, Jihun;Kim, Jin Ho
    • Journal of Magnetics
    • /
    • 제18권4호
    • /
    • pp.466-472
    • /
    • 2013
  • This paper presents a new design of the hybrid magnet engine valve actuator using the shorted turn for enhanced dynamic performance. The quick response of coil electric current is the most important factor that determines the opening and closing performance of the hybrid magnet engine valve. The conventional hybrid magnet engine valve actuator, however, has a delayed initial electric current rising when it is driven by voltage control because of the coil inductance which is a typical characteristic of an electromagnetic coil. A shorted turn is newly placed into the upper yoke of the hybrid magnet engine valve actuator to reduce coil inductance and thus, to hasten the initial electric current rising. We performed a dynamic finite element analysis to demonstrate the improvement of the dynamic characteristics of the hybrid magnet engine valve actuator due to the shorted turn.

미진동 저감을 위한 복합형 전자기식 작동기의 개발에 대한 연구 (A Study on the Development of a Hybrid Electromagnetic Actuator Against Microvibration)

  • 문석준;박수홍;정종안;허영철;김철호;최상민
    • 한국소음진동공학회논문집
    • /
    • 제21권5호
    • /
    • pp.475-483
    • /
    • 2011
  • A hybrid electromagnetic actuator with an air mount is designed so as to achieve the desired isolation reduce the vibration efficiency on the floor vibration. The performance specification of the hybrid electromagnetic actuator is determined based on the vibration criterion for vibration-sensitive equipment. In the design stage of the electromagnetic actuator, the simple reluctance method is adapted to analyze magnetic circuits. The result is verified by finite element analysis using ANSYS Emag. Finally, in order to confirm the design performance, a dynamic characteristic test is carried out for the prototype of a hybrid electromagnetic actuator.

전자기 작동기와 압전 작동기를 이용한 하이브리드 마운트의 제어성능 평가 (Control Performance of Hybrid Mount Using Electromagnetic Actuator and PZT Actuator)

  • 팽용석;육지용;문석준;최승복
    • 한국소음진동공학회논문집
    • /
    • 제17권7호
    • /
    • pp.617-623
    • /
    • 2007
  • This paper presents an active vibration control of a dynamic system using hybrid mount which consists of elastic rubber-piezostack actuator and elastic rubber-electromagnetic actuator, respectively. After identifying stiffness, damping properties of the elastic rubber, PZT actuator and electromagnetic element, a mathematical model of the hybrid mount is established. The mount model is then incorporated into the dynamic system and the governing equation of motion is obtained in a state space. A sliding mode controller is designed in order to actively attenuate the vibration of the system. Control responses such as acceleration and transmitted force of the dynamic system are experimentally evaluated and presented in time and frequency domains.

전자기 작동기와 압전 작동기를 이용한 하이브리드 마운트의 제어성능 평가 (Control Performance of Hybrid Mount Using Electromagnetic Actuator and PZT Actuator)

  • 팽용석;육지용;문석준;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.1131-1136
    • /
    • 2007
  • This paper presents an active vibration control of a 1-DOF system using hybrid mount which consists of elastic rubber and PZT(piezostack) actuator and elastic rubber and electromagnetic actuator, respectively After identifying stiffness, damping properties of the elastic rubber, PZT actuator and electromagnetic element, a mathematical model of the hybrid mount is established. The mount model is then incorporated into the 1-DOF system and the governing equation of motion is obtained in a state space. A sliding mode controller is designed in order to actively attenuate the vibration of the system. Control responses such as acceleration and transmitted force of the 1-DOF system are experimentally evaluated and presented in time and frequency domains.

  • PDF

기록용 고밀도 광디스크를 위한 박형 틸트 구동기 (Slim Tilt Actuator for High density Recording in the Optical Disc)

  • 정호섭;이호철;윤용한
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.788-793
    • /
    • 2002
  • Hybrid type slim tilt actuator and 6-wire supported are developed for DVD recording in the optical disc drive of notebook PC, which can compensate the inclination of disc and objective lens. The hybrid actuator uses the actuating method of moving coil in the focus and track direction and that of moving magnet in the tilt direction. Comparing with 6-wire supported actuator and hybrid type actuator, we can choose an actuator for slim super combo pickup. Two actuator are designed through the modal analysis and magnetic field analysis and experimental results shows dynamic characteristics. Finally, it is verified that the actuator can compensate the disc tilt of ${\pm}0.4^{\circ}$.

  • PDF

틸트제어를 위한 하이브리드형 광픽업 구동기에 대한 연구 (Study on Hybrid type Optical Pickup Actuator for Tilt Control)

  • 김철진;이경택;신창훈;박노철;박영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.782-787
    • /
    • 2002
  • In optical disk drives (ODD), the demands of high data density and high speed have been increasing rapidly to achieve high data capacity and data transfer rate. The short wavelength laser, High NA objective lens, and high track following performance are needed to raise data density and data rate. For high-performance actuator, the improvement of linearity and acceleration become more important. Also, 3-axis actuator for active tilt compensation is introduced to overcome the decrease in disk tilt tolerance which is induced by short wavelength laser. In this paper, a hybrid type 3-axis actuator is presented and a new yoke structure, which can reduce the interaction between yoke and moving magnet, is designed to keep the efficiency of magnetic circuit. Experimental results show the validity of the yoke in the hybrid type actuator.

  • PDF

CONTROL PERFORMANCE IMPROVEMENT OF AN EMV SYSTEM USING A PM/EM HYBRID ACTUATOR

  • Ahn, H.J.;Chang, J.U.;Han, D.C.
    • International Journal of Automotive Technology
    • /
    • 제8권4호
    • /
    • pp.429-436
    • /
    • 2007
  • In this study, we improved control performance of an EMV (electromechanical valve) system using a PM/EM (permanent magnet/electromagnet) hybrid EMA (electromagnetic actuator) and showed the feasibilities of both soft landing and fast transition of the EMV system using a simple PID control. The conventional EMV systems using only EM show significant nonlinear characteristics. Therefore, it is very difficult to control the valve position and several complex control schemes are used. This paper focused on the control performance improvement using a PM/EM hybrid actuator. In particular, a PM is used as a key design parameter such as a bias current of a magnetic bearing in order to improve the linear characteristic of the actuator, although most PM/EM hybrid actuators use a PM as a power saver during valve-open and -closed states. First, a FE (finite element) analysis was performed to confirm its linear static force characteristics. Then, both a test rig and a valve control system were built in order to prove experimentally the control performance improvement of the actuator. Finally, feasibilities of both soft landing and fast transition of the system were shown experimentally through gain-scheduled PID (proportional derivative integral) control.

Localized evaluation of actuator tracking for real-time hybrid simulation using frequency-domain indices

  • Xu, Weijie;Guo, Tong;Chen, Cheng
    • Structural Engineering and Mechanics
    • /
    • 제62권5호
    • /
    • pp.631-642
    • /
    • 2017
  • Accurate actuator tracking plays an important role in real-time hybrid simulation (RTHS) to ensure accurate and reliable experimental results. Frequency-domain evaluation index (FEI) interprets actuator tracking into amplitude and phase errors thus providing a promising tool for quantitative assessment of real-time hybrid simulation results. Previous applications of FEI successfully evaluated actuator tracking over the entire duration of the tests. In this study, FEI with moving window technique is explored to provide post-experiment localized actuator tracking assessment. Both moving window with and without overlap are investigated through computational simulations. The challenge is discussed for Fourier Transform to satisfy both time domain and frequency resolution for selected length of moving window. The required data window length for accuracy is shown to depend on the natural frequency and structural nonlinearity as well as the ground motion input for both moving windows with and without overlap. Moving window without overlap shows better computational efficiency and has potential for future online evaluation. Moving window with overlap however requires much more computational efforts and is more suitable for post-experiment evaluation. Existing RTHS data from Network Earthquake Engineering Simulation (NEES) is utilized to further demonstrate the effectiveness of the proposed approaches. It is demonstrated that with proper window size, FEI with moving window techniques enable accurate localized evaluation of actuator tracking for real-time hybrid simulation.

내충격 성능을 고려한 함정용 하이브리드 마운트의 설계 (Design of Hybrid Mount to Naval Shipboard Considering Shock Resistance)

  • 조혜영;신윤호;문석준;정우진
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 추계학술대회 논문집
    • /
    • pp.102-107
    • /
    • 2012
  • In this study, the design procedure of hybrid active mount by an electro-magnetic actuator is proposed to reduce the transmitted force from naval shipboard equipment to ship hull structure. The hybrid type mount which is composed of a passive rubber element and an electro-magnetic actuator is introduced and, through the vibration measurement for the objective pump system, the required force of the actuator is computed and discussed in detail. The initial designs were supposed for three types, one is moving coil type actuator and the others are moving permanent magnet type actuators. Based on the initial design concept, the final designs considering shock resistance and interference with mover and stator are proposed and examined.

  • PDF