• Title/Summary/Keyword: Hupo Basin

Search Result 15, Processing Time 0.026 seconds

Characteristics of Pockmark Topography in Hupo Basin, East Sea (동해 후포분지의 Pockmark 해저지형 특성 연구)

  • Kim, ChangHwan;Park, ChanHong;Lee, MyoungHoon;Choi, SoonYoung;Kim, WonHyuck
    • Economic and Environmental Geology
    • /
    • v.52 no.6
    • /
    • pp.561-571
    • /
    • 2019
  • The Hupo Basin, continental marginal basin, of the East Sea extends to Uljin-gun and Yeongdeok-gun. The Hupo Bank, a terrain that is higher than the surrounding seabed, is located at the eastern boundary of the Hupo Basin. KIOST(Korea Institute of Ocean Science and Technology) conducted detailed bathymetry surveys in the northern, central and southern areas of the Hupo Basin from 2011 to 2013. The Hupo Basin, bounded by steep slopes of the Hupo Bank, is deepened from the west coast to the east and deepest to a maximum depth of about 250 m. A narrow seafloor channel appears in the northern, central, and southern areas with the deepest depths. Numerous pockmarks appear on the seafloor at depths of about 150 ~ 250 m in all the three areas of the detailed bathymetry surveys. These pockmarks generally have diameters of about 20 to 50 m and depths of about 4 to 6 m, with craterlike submarine topography of various sizes. Seafloor sediments in the pockmark areas consist of fine silt. Comparing the shape and size of the pockmark of the Hupo Basin with that of other regions of the world, it is considered to be classified as a normal pockmark. There are about 7 pockmarks/1 ㎢ in the northern part of the three areas and about 8 pockmarks/1 ㎢ in the central part. The southern part has about 5 pockmarks/1 ㎢. If the area with the possibility of pockmarks is extended to the depth area of about 150 ~ 250 m in the entire Hupo Basin, the number of pockmarks is estimated to be more than about 4800. The pockmark of the Hupo Basin is more likely to be generated by a fluid such as a liquid than a gas. But it is necessary to scrutinize the cause and continuously monitor the pockmark.

High-resolution Seismic Imaging of Shallow Geology Offshore of the Korean Peninsula: Offshore Uljin (신기 지구조운동의 해석을 위한 한반도 근해 천부지질의 고해상 탄성파 탐사: 울진 주변해역)

  • Kim, Han-Joon;Jou, Hyeong-Tae;Yoo, Hai-Soo;Kim, Kwang-Hee;You, Lee-Sun
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.2
    • /
    • pp.127-132
    • /
    • 2011
  • We acquired and interpreted more than 650 km of high-resolution seismic reflection profiles in the Hupo Basin, offshore east coast of Korea at $37^{\circ}N$ in the East Sea (Japan Sea) to image shallow and basement deformation. The seismic profiles reveal that the main depocenter of the Hupo Basin in the study area is bounded by the large offset Hupo Fault on the east and an antithetic fault on the west; however, the antithetic fault is much smaller both in horizontal extension and in vertical displacement than the Hupo Fault. Sediment infill in the Hupo Basin consists of syn-rift (late Oligocene. early Miocene) and post-rift (middle Miocene.Holocene) units. The Hupo Fault and other faults newly defined in the Hupo Basin strike dominantly north and show a sense of normal displacement. Considering that the East Sea has been subjected to compression since the middle Miocene, we interpret that these normal faults were created during continental rifting in late Oligocene to early Miocene times. We suggest that the current ENE direction of maximum principal compressive stress observed in and around the Korean peninsula associated with the motion of the Amurian Plate induces the faults in the Hupo Basin to have reverse and right-lateral, strike-slip motion, when reactivated. A recent earthquake positioned on the Hupo Fault indicates that in the study area and possibly further in the eastern Korean margin, earthquakes would occur on the faults created during continental rifting in the Tertiary.

Mineralogical Characteristics of Marine Sediments Cores from Uleung Basin and Hupo Basin, East Sea (동해 울릉분지와 후포분지 해양 퇴적물 코어의 광물학적 특성)

  • Lee, Su-Ji;Kim, Chang-Hwan;Jun, Chang-Pyo;Lee, Seong-Joo;Kim, Yeongkyoo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.71-81
    • /
    • 2015
  • This study was carried out in order to investigate the mineralogical characteristics of the core sediments (03GHP-02 and HB13-2), obtained from the Ulleung Basin and Hupo Basin, Korea. The results on mineral compositions, clay mineral compositions, and the total contents and sequential extraction of different fractions of the phosphorus in core samples showed that those values are different in two cores and also at different depths. In both samples, mineral compositions were the same, composed mainly of quartz, microcline, albite, calcite, opal A, pyrite, and clay minerals (illite, chlorite, kaolinite, and smectite). However, the sample from Hupo Basin contains more opal A. Both samples, especially the ones from Hupo Basin contains more smectite than those reported from East Sea, indicating the influence of paleo-Hwangwei River and the Tertiary Formation of Korea Peninsula. For the samples from Uleung Basin, at 0.7-3.5 m range in depth, the low content of opal A and the low illite crystallinity index can be inferred to indicate the relatively cool climate, corresponding to the ice age. Also, the content of total phosphorus was low in those samples. It was reported that East Sea at that time was isolated from the neighboring seas due to the decrease of the sea level, and as a result, the influx of sediments was supposed to be little through the strait and rivers. For the samples from Hupo Basin, there is no significant changes in clay mineral composition and the distribution of phosphorus with increasing depth. This little change can be interpreted to indicate that the sediments comprising the core might be deposited in a relatively short period of time or deposited in sedimentary environment in which there's no significant changes in sediment supplies. The values of crystallinity index of clay minerals are high in those samples, indicating that it was relatively warm during that time. Although the increase of fluctuation pattern can be observed, showing that the climate of this period often changed, it is supposed that it was generally warm.

Detailed Bathymetry and Seabed Characteristics of Wangdol-cho, Hupo Bank in the East Sea (동해 후포퇴 왕돌초 주변의 정밀해저지형 및 해저면 특성 분석)

  • Kim, Chang Hwan;Park, Chan Hong
    • Economic and Environmental Geology
    • /
    • v.47 no.5
    • /
    • pp.533-540
    • /
    • 2014
  • The Wangdol-cho area, in the Hupo Bank, plays a very important role in main fishing grounds, leisure tourism and marine environmental researches of the East Sea. We analyzed the detailed bathymetry and classified the seabed characteristics of the Wangdol-cho area, based on seafloor backscattering images and sediment grain size. The Hupo Bank is developed in parallel with the eastern coastal line of Korean peninsula, and the shallowest area (Wangdol-cho) of the Hupo Bank is located along the eastern part of Hupo Port. The Wangdol-cho comprises three summits; north summit, middle summit, and south summit. The middle summit area among the three summits has the most shallow water depth with minimum about 6 m. The north summit shows about 8 m minimum depth and the south summit about 9 m. The bathymetry data around three summits represent undulating seabeds with many scattered underwater reefs and shallow water depth. The area between the underwater reefs, the flat seafloor in the northeastern part of the survey site, and the western steep slope area have relatively coarse sediments such as sandy gravel and gravelly sand. The bathymetry in the western side of the Wangdol-cho shows steep slope seabed, extending to the Hupo Basin. Fine sediments including mud and silty sand occur in the Hupo Basin area of the survey site. The submarine detailed topography and the analysis of the seafloor characteristics of the survey area are expected to contribute to management for marine environmental researches and sustainable use of ecosystems in the Wangdol-cho.

Submarine Geology of Continental Margin of the East Sea, Korea (한국(韓國) 동해대륙단(東海大陸端) 해저지질(海底地質))

  • Kim, Chong Su
    • Economic and Environmental Geology
    • /
    • v.15 no.2
    • /
    • pp.65-88
    • /
    • 1982
  • In the last ten years, marine geological and geophysical survey and research were conducted by Japanese, Russian and American scientists in the East Sea of Korea (Japan Sea). Many research results were published. However, regional research of the geology of the continental margin of the Korean Peninsula was not conducted. This study has made on attempt to classify submarine strata and stratigraphic boundaries. The study has revealed characters of submarine geology and structure. Isopach maps of each identified stratigraphic unit have been constructed as the results of this study. The study was conducted on the basis of analyses of marine seismic surveys carried out in the continental margin of the East Sea between Kangneung and Pohang. Three depositional basins were identified in the study area and they were named as, Mukho Basin, Hupo Basin and Pohang Basin. The Mukho Basin is developed in continental slope and shelf in the area between Kangneung and Samcheog. Quaternary and Pliocene sediments attain a maximum thickness of 900 m. Basement rocks are interpreted as granite and gneiss. They are correlated with granite-gneiss of the Taebaecksan Series of Pre-cambrian age and the Daebo granite of Jurassic age. The Hupo Basin is developed in the continental shelf between Uljin and Youngdeok. Quaternary and Pliocene sediments attain a maximum thickness of 600 m. Basement rocks were interpreted as granite and gneiss and they are correlated with metamorphic rocks of Pre-cambrian age and the Daebo granites, comprising the Ryongnam Massif. The Pohang Basin is developed in the area between Pohang and Gangu. This basin contains Miocene and older sediments. Basement rocks are not shown. Many faults are developed within the continental shelf and slope. These faults strike parallel with the coast line. A north-south direction is predominant in the southern study area. However, in the northern study area the faults strike north, and north-west. The faults are parallel to each other and are step faults down-thrown to the east or west, forming horst and graben structures which develop into sedimentary basins. Such faults caused the development of submarine banks along the boundary between the continental shelf and slope. This bank has acted as a barrier for deposition in the Hupo Basin. Paleozoic sedimentary rocks distributed widely in the adjacent land area are absent in the Mukho Basin. This suggests that the area of the basin was situated above the sea level until the Pliocene time. The study area contains Pliocene sediments in general. These sediments overlie the basement complex composed of metamorphic rocks, granites, Cretaceous (Kyongsang System) sedimentary rocks and Miocene sedimentary rocks. These facts lead to a conclusion that the continental shelf and slope of the study area were developed as a result of displacements along faults oriented parallel to the present coast line in the post Miocene time.

  • PDF

Evolution of Neogene Sedimentary Basins in the Eastern Continental Margin of Korea (한반도 동해 대륙주변부 신제삼기 퇴적분지의 진화)

  • Yoon Suk Hoon;Chough Sung Kwun
    • The Korean Journal of Petroleum Geology
    • /
    • v.1 no.1 s.1
    • /
    • pp.15-27
    • /
    • 1993
  • Seismic reflection profiles from the eastern continental margin of Korea delineate three major Neogene sedimentary basins perched on the shelf and slope regions: Pohang-Youngduk, Mukho and Hupo basins. The stratigraphic and structural analyses demonstrate that the formation and filling of these basins were intimately controlled by two phases of regional tectonism: transtensional and subsequent contractional deformations. In the Oligocene to Early Miocene, back-arc opening of the East Sea induced extensional shear deformation with dextral strike-slip movement along right-stepping Hupo and Yangsan faults. During the transtensional deformation, the Pohang-Youngduk Basin was formed by pull-apart opening between two strike-slip faults; in the northern part, block faulting caused to form the Mukho Basin between basement highs. As a result of the back-arc closure, the stress field was inverted into compression at the end of the Middle Miocene. Under the compressive regime, two episodes (Late Miocene and Early Pliocene) of regional deformation led to the destruction and partial uplift of the basin-filling sequences. In particular, during the second episode of compressive deformation, the Hupo fault was reactivated with an oblique-slip sense, which resulted in an opening of the Hupo Basin as a half-graben on the downthrown fault block.

  • PDF

Paleoenvironmental Reconstruction of the Hupo Basin Using Grain Size and Mineral Analysis (동해 후포분지 퇴적물의 입도와 광물 분석을 통한 고환경 해석)

  • Jun, Chang-Pyo;Kim, Chang-Hwan;Kim, Yeongkyoo;Lee, Seong-Joo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.159-168
    • /
    • 2014
  • Holocene plaeoenvironmental changes were interpreted by grain size and mineral analyses of a piston core (HB 13-2), obtained along the western slope of the Hupo Basin, Korea. The core sediments are characterized by two discrete, sedimentary facies: upper unit (0-0.4 mbsf) dominated by bioturbation structures with weak lamination, and lower unit (0.4-3.3 mbsf) characterized by intensified bioturbation toward bottom. Analysis of sensitive grain size and sortable silt demonstrated that the inflow of the Tsushima Warm Current (TWC) into the Hupo Basin strengthen from the period of sediment deposition over 0.82 mbsf. The minerals of the core sediments are composed mainly of quartz, microcline, orthoclase, albite and clay minerals including chlorite, kaolinite and illite. No noticeable changes of the mineral percentage was observed according to the grain size and depth of the samples. The integral breadth (${\Delta}^{\circ}2{\theta}$) of clay minerals from 1.4 mbsf to top layer shows an increasing trend, which clearly means climate warming from the period of sediment deposition above 1.4 mbsf. This interval correlates with the Holocene climate optimum at Mid Holocene.

Geochemical Results and Implication of the Organic Matter in the Holocene Sediments from the Hupo Basin (후포분지 홀로세 퇴적물의 유기물에 대한 지화학 분석 결과 및 의미)

  • Kim, Ji-Hoon;Park, Myong-Ho;Kong, Gee-Soo;Han, Hyun-Chul;Cheong, Tae-Jin;Choi, Ji-Young;Kim, Jin-Ho;Kang, Moo-Hee;Lee, Chi-Won;Oh, Jae-Ho
    • Economic and Environmental Geology
    • /
    • v.43 no.1
    • /
    • pp.1-12
    • /
    • 2010
  • Geochemical approaches on the two recovered piston cores were performed to understand the characteristics of organic matters and the influence of the sea level variation of the East Sea in the Hupo Basin since the Holocene. The analyzing results on organic components (TOC and TN), and isotopic compositions of organic matters showed the variation to core locations and sampling depths. In core 08HZP-01, their values were gradually changed with depth from 4 mbsf to seafloor. However, rapid variation was observed at the boundary of 4.71 mbsf (meter below seafloor) in core 08HZP-03. Based on TOC/TN, $\delta^{13}C_{org}$ and $\delta^{15}N_{org}$, the origin of organic matters in the Hupo Basin can be divided into three groups; 1) predominant marine algae, 2) $C_3$ land plant, and 3) mixture of $C_3$ land plant and marine/freshwater algae. It is likely that the vertical and spatial variations of organic and isotopic compositions reflect the shifts in sedimentary environment (including sediment transportation) by ocean currents and sea-level changes and others during the Holocene period.

A study on the crustal structure of the continental margin in the East Sea along the Korea Peninsula using potential data (포텐셜자료를 이용한 한반도 동해 대륙주변부의 지각구조에 관한 연구)

  • Kim, Chang-Hwan;Yoo, Lee-Sun;Park, Chan-Hong;Suk, Dong-Woo
    • Journal of the Korean Geophysical Society
    • /
    • v.10 no.1
    • /
    • pp.13-25
    • /
    • 2007
  • We investigated the undulation of Moho depth and the crustal structure of the continental margin in the East Sea along the Korea Peninsula from inversion and modelling using potential data and previous seismic results. Free-air gravity anomalies generally reflect topography effect. Bouguer gravity anomalies increase toward the Ulleung Basin, indicating that Moho depth is shallower under the Ulleung Basin. Positive magnetic anomalies exist along the continental margin and decrease toward the Ulleung Basin. In analytic signal, the small anomaly in the Hupo Bank infers that the Hupo Bank is uplifted by igneous intrusion and the strong anomaly on the continental slope denotes existence of SDR(seaward dipping reflectors), which are in accordance with the location of SDR detected in previous seismic studies. The inversion result of Bouguer gravity anomaly and the 2-dimensional gravity modelling indicate that the undulation of Moho depth shallows from the continental shelf toward the Ulleung Basin. This is in good agreement with the Moho depth calculated by the previous seismic velocity model using ocean bottom seismometer(OBS). The 2-dimensional gravity modelling infers magmatic underplating zone under the lower continental crust on the continental margin of the East Sea, indicating the possible rifiting of the continental margin.

  • PDF

항만정온도 해석을 위한 수치모형적용과 상호비교분석

  • Lee, Dong-Hyeon;Kim, Gang-Min;Choe, Se-Ho;Lee, Jung-U
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2014.06a
    • /
    • pp.255-257
    • /
    • 2014
  • The harbor tranquility is indicating the level of calmness in the mooring basin of harbor. It relates keenly to berthing/unberthing and cargo handling works but also it is an important indicator to get the minimum water area as the safe refuge. Therefore, it is necessary to analyze in complex the variation of wave height and direction caused by wave refraction, diffraction, shoaling and reflection from the incident waves from outside the harbor. In order to check the calmness inside a harbor, the numerical models are being used currently need fundamental reviews according to the difference of results which depend on their respective features. In this study, hence, it was introduced the validity of numerical models by comparing the computational results for Hupo harbor.

  • PDF