DOI QR코드

DOI QR Code

Paleoenvironmental Reconstruction of the Hupo Basin Using Grain Size and Mineral Analysis

동해 후포분지 퇴적물의 입도와 광물 분석을 통한 고환경 해석

  • Jun, Chang-Pyo (Department of Geology, Kyungbook National University) ;
  • Kim, Chang-Hwan (Dokdo Research Center, East Sea Research Institute, Korea Institute of Ocean Science & Technology (KIOST)) ;
  • Kim, Yeongkyoo (Department of Geology, Kyungbook National University) ;
  • Lee, Seong-Joo (Department of Geology, Kyungbook National University)
  • 전창표 (경북대학교 지질학과) ;
  • 김창환 (한국해양과학기술원 동해연구소 독도전문연구센터) ;
  • 김영규 (경북대학교 지질학과) ;
  • 이성주 (경북대학교 지질학과)
  • Received : 2014.09.19
  • Accepted : 2014.09.27
  • Published : 2014.09.30

Abstract

Holocene plaeoenvironmental changes were interpreted by grain size and mineral analyses of a piston core (HB 13-2), obtained along the western slope of the Hupo Basin, Korea. The core sediments are characterized by two discrete, sedimentary facies: upper unit (0-0.4 mbsf) dominated by bioturbation structures with weak lamination, and lower unit (0.4-3.3 mbsf) characterized by intensified bioturbation toward bottom. Analysis of sensitive grain size and sortable silt demonstrated that the inflow of the Tsushima Warm Current (TWC) into the Hupo Basin strengthen from the period of sediment deposition over 0.82 mbsf. The minerals of the core sediments are composed mainly of quartz, microcline, orthoclase, albite and clay minerals including chlorite, kaolinite and illite. No noticeable changes of the mineral percentage was observed according to the grain size and depth of the samples. The integral breadth (${\Delta}^{\circ}2{\theta}$) of clay minerals from 1.4 mbsf to top layer shows an increasing trend, which clearly means climate warming from the period of sediment deposition above 1.4 mbsf. This interval correlates with the Holocene climate optimum at Mid Holocene.

동해 후포분지의 고환경을 규명하기 위해 HB 13-2 코어를 대상으로 퇴적물의 입도 분석 및 XRD, XRF를 통한 광물 분석을 실시하였다. HB 13-2 코어 퇴적물은 0.4 mbsf를 기준으로 엽리가 미약하고 생교란작용이 나타나는 퇴적상과 생교란작용이 하부로 갈수록 강해지는 두 개의 퇴적상으로 구분된다. 0-0.82 mbsf 구간에서의 비응집성 실트(sortable silt) 함량의 갑작스러운 증가와 상부층준에서의 민감입도 요소의 변화는 대마난류의 영향이 증가하였음을 보여준다. 퇴적물의 주 구성광물은 석영, 미사장석, 정장석, 알바이트와 더불어 녹니석, 캐올리나이트, 일라이트와 같은 점토광물이 포함되어 있으며 이들은 시료의 깊이 및 입도와 크게 연관성이 없는 것으로 나타나는데 이는 코아시료의 퇴적기간 동안 수문학적 변화는 크지 않았음을 시사한다. 1.4 mbsf부터 점토광물의 결정도가 감소하고 S/I 피크가 증가하는 현상은 온난다습한 기후의 영향으로 판단된다.

Keywords

References

  1. Adams, W.J., Kimerle, R.A., and Barnett Jr., J.W. (1992) Sediment quality and aquatic life assessment. Environmental Science and Technology, 26, 1863-1876.
  2. Alizai, A., Hillier, S., Clift, P.D., Giosan, L., Hurst, A., VanLaningham, S., and Macklin, M. (2012) Clay mineral variations in Holocene terrestrial sediments from the Indus Basin. Quaternary Research, 77, 368-381. https://doi.org/10.1016/j.yqres.2012.01.008
  3. Biscaye, P.E. (1965) Mineralogy and sedimentation of recent deep-sea clay on the Atlantic Ocean and adjacent seas and oceans. Geological Society of America Bulletin, 76, 803-832. https://doi.org/10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2
  4. Blott, S.J., and Pye, K. (2001) GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surface Processes and Landforms, 26, 1237-1248. https://doi.org/10.1002/esp.261
  5. Boulay, S., Colin, C., Trentesaux, A., Pluquet, F., Bertaux, J., Blamart, D., Buehring, C., and Wang, P. (2003) Mineralogy and sedimentology of Pleistocene sediment in the South China Sea (ODP Site 1144). In: Prell, W.L., Wang, P., Blum, P., Rea, D.K. and Clemens, S.C. (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, 184, 1-21.
  6. Cahoon, L.B., Nearhoof, J.E., and Tilton, C.L. (1999) Sediment grain size effect on benthic microalgal biomass in shallow aquatic ecosystems. Estuaries, 22, 735-741. https://doi.org/10.2307/1353106
  7. Chapman, P.M. (1989) Current approaches to developing sediment quality criteria. Environmental Toxicology and Chemistry, 8, 589-599. https://doi.org/10.1002/etc.5620080706
  8. Cho, H.G., Kim, S.O., and Yi, H.I. (2012) Clay mineral distribution and characteristics in the southeastern Yellow Sea mud deposits. Journal of the Mineralogical Society of Korea, 25, 163-173 (in Korean with English abstract). https://doi.org/10.9727/jmsk.2012.25.3.163
  9. Cho, H.G., Kim, S.O., Yi, H.I., and Shin, K.H. (2012) Mineral distribution in the southeastern Yellow Sea surface sediments; KORDI cruise samples in 2010. Journal of the Mineralogical Society of Korea, 24, 205-216 (in Korean with English abstract). https://doi.org/10.9727/jmsk.2011.24.3.205
  10. Choi, J.-Y., Lim, D.-I., Park, C.-H., Kim, S.-Y., Kang, S., and Jung, H.-S. (2010) Characteristics of clay mineral compositions in river sediments around the Yellow Sea and its application to the provenance of the continental shelf mud deposits. Journal of the Geological Society of Korea, 46, 497-509 (in Korean with English abstract).
  11. Domitsu, H., and Oda, M. (2008) Holocene influx of the Tsushima Current into the Japan Sea signalled by spatial and temporal changes in Neogloboquadrina incompata distribution. The Holocene, 18, 345-352. https://doi.org/10.1177/0959683607086772
  12. Dou, Y., Yang, S., Li, Z., Clift, P.D., Yu, Hua, Berne, S., and Shi, X. (2010) Clay mineral evolution in the central Okinawa Trough since 28 ka: implications for sediment provenance and paleoenvironmental change. Palaeogeography, Plaeoclimatology, Palaeoecology, 288, 108-117. https://doi.org/10.1016/j.palaeo.2010.01.040
  13. Ehrmann, W. (1998) Implications of late Eocene to early Miocene clay mineral assemblages in McMurdo Sound (Ross Sea, Antarctica) on paleoclimate and ice dynamics. Palaeogeography, Palaeoclimatology, Palaeoecolgy, 139, 213-231. https://doi.org/10.1016/S0031-0182(97)00138-7
  14. Ehrmann, W., Setti, M., and Marinoni, L. (2005) Clay minerals in Cenozoic sediments off Cape Roberts (McMurdo Sound, Antarctica) reveal palaeoclimatic history. Palaeogeography, Palaeoclimatology, Palaeoecolgy, 229, 187-211. https://doi.org/10.1016/j.palaeo.2005.06.022
  15. Gao, S., Collins, M.B., Lanckneus, J., DeMoor, G., and Van Lancker, V. (1994) Grain size trends associated with net sediment transport patterns: An example from the Belgian continental shelf. Marine Geology, 121, 171-185. https://doi.org/10.1016/0025-3227(94)90029-9
  16. Gimenez, L., Venturini, N., Kandratavicius, N., Hutton, M., Landfranconi, A., Rodriguez, M., Brugnoli, E., and Muniz, P. (2014) Macrofaunal patterns and animal-sediment relationships in Uriguayan estuaries and coastal lagoons (Atlantic coast of South America). Journal of Sea Research, 87, 46-55. https://doi.org/10.1016/j.seares.2013.12.005
  17. Horiuchi, K., Minoura, K., Hoshino, K., Oda, T., Nakamura, T., and Kawai, T. (2000) Palaeoenvironmental history of Lake Baikal during the last 23000 years. Palaeogeography, Palaeoclimatology, Palaeoecolgy, 157, 95-108. https://doi.org/10.1016/S0031-0182(99)00156-X
  18. KIGAM (2009) Coastal geohazard factor analysis (Uljin area). Korea Institute of Geoscience and Mineral Resources, KiGAM, Daejeon, 279p.
  19. Kim, J.-H., Park, M.-H., Kong, G.-S., Han, H.-C., Cheong, T.-J., Choi, J., Kim, J.H., Kang, M.-H., Lee, C.-W., and Oh, J.-H. (2010) Geochemical results and implications of the organic matter in the Holocene sediments from the Hupo Basin. Economic and Environmental Geology, 43, 1-12 (in Korean with English abstract).
  20. Kim, J.-M., Kennett, J.P., Park, B.-K., Kim, D.C., Kim, G.Y., and Roark, E.B. (2000) Paleoceanographic change during the last deglaciation, East Sea of Korea. Paleoceanography, 15, 254-266. https://doi.org/10.1029/1999PA000393
  21. Koizumi, I. (2008) Diatom-derived SSTs (Td' ratio) indicate warm seas off Japan during the middle Holocene (8.2-3.3 kyr BP). Marine Micropaleontology, 69, 263-281. https://doi.org/10.1016/j.marmicro.2008.08.004
  22. Kylander, M.E., Ample, L., Wohlfarth B., and Veres, D. (2011) High-resolution X-ray fluorescence core scanning analysis of Les Echets (France) sedimentary sequence: new insights from chemical proxies. Journal of Quaternary Science, 26, 109-117. https://doi.org/10.1002/jqs.1438
  23. Lamy, F., Klump, J., Hebbeln, D., and Wefer, G. (2000) Late Quaternary rapid climate change in northern Chile. Terra Nova, 12, 8-13. https://doi.org/10.1046/j.1365-3121.2000.00265.x
  24. Lee, K.E., 2007, Surface water changes recorded in Late Quaternary marine sediments of the Ulleung Basin, East Sea (Japan Sea). Palaeogeography, Palaeoclimatology, Palaeoecology, 247, 18-31. https://doi.org/10.1016/j.palaeo.2006.11.019
  25. Lee, Y.D., You, H.S., and Kim, S.Y. (1996) Silicoflagellate biostaratigraphy and sediment facies in Ulleung Basin, the East Sea. Journal of the Geological Society of Korea, 32, 73-90 (in Korean with English abstract).
  26. Lee, Y.J., Cho, H.G., Kim, S.O., Ahn S.J., and Choi, H. (2013) Sediment Provenance of southwestern Cheju Island mud using principal component analysis. Journal of the Mineralogical Society of Korea, 26, 189-196 (in Korean with English abstract). https://doi.org/10.9727/jmsk.2013.26.3.189
  27. Lim, D.I., Kang, S., Yoo, H.S., Choi, J.Y., Kim, H,N., and Shin, I.H. (2006) Late Quaternary sediments on the outer shelf of the Korea Strait and their paleoceanographic implications. Geo-Marine Letters, 26, 287-296. https://doi.org/10.1007/s00367-006-0039-x
  28. Liu, J.P., Milliman, J.D., Gao, S., and Cheng, P. (2004) Holocene development of the Yellow River's subaqueous delta, North Yellow Sea. Marine Geology, 209, 45-67. https://doi.org/10.1016/j.margeo.2004.06.009
  29. McCave, I.N., Crowhurst, S.J., Kuhn, G., Hillenbrand, C.-D., and Meredith, M.P. (2014) Minimal change in Antarctic Circumpolar Current flow speed between the last glacial and Holocene. Nature Geoscience, 7, 113-116. https://doi.org/10.1038/ngeo2037
  30. McCave, I.N., Manighetti, B., and Robinson, S.G. (1995) Sortable silt and fine sediment size/composition slicing : Parameters for palaeocurrent speed and palaeoceanography. Paleoceanography, 10, 593-610. https://doi.org/10.1029/94PA03039
  31. McLachlan, A. (1996) Physical factors in benthic ecology: effects of changing sand particle size on beach fauna. Marine Ecology Progress Series, 131, 205-217. https://doi.org/10.3354/meps131205
  32. Moon, D.K., Yi, H.-I., Shin, K.-H., Do, J.Y., and Cho, H.G. (2009) Mineral distribution of the southeastern Yellow Sea and South Sea of Korea using quantitative XRD analysis. Journal of the Mineralogical Society of Korea, 22, 49-61 (in Korean with English abstract).
  33. Nahm, W.-H., Kim, J.-Y., Lim, J., and Yu, K.-M. (2011) Responses of the upriver valley sediment to Holocene environmental changes in the Paju area of Korea. Geomorphology, 133, 80-89. https://doi.org/10.1016/j.geomorph.2011.06.023
  34. Nishida, N., and Ikehara, K. (2013) Holocene evolution of depositional processes off southwest Japan: Response to the Tsushima Warm Current and sea-level rise. Sedimentary Geology, 290, 138-148. https://doi.org/10.1016/j.sedgeo.2013.03.012
  35. Park, J., Yu, K.B., Lim, H.S., and Shin, Y.H. (2012) Holocene environmental changes on the east coast of Korea. Journal of Paleolimnology, 48, 535-544. https://doi.org/10.1007/s10933-012-9629-y
  36. Petschick, R. (2000) MacDiff 4.2.5 Manual. Available from World Wide Web: http://www.geologie.uni-frankfurt.de/Staff/Homepages/Petschick/RainerE.html.
  37. Poizot, E., Mear, Y., and Biscara, L. (2008) Sediment Trend Analysis through the variation of granulo metric parameters: A review of theories and applications. Earth-Science Reviews, 86, 15-41. https://doi.org/10.1016/j.earscirev.2007.07.004
  38. Ryu, E., Yi, S., and Lee, S.-J. (2005) Late Pleistocene-Holocene paleoenvironmental changes inferred from the diatom record of the Ulleung Basin, East Sea (Sea of Japan). Marine Micropaleontolgoy, 55, 157-182. https://doi.org/10.1016/j.marmicro.2005.03.004
  39. Thornalley, D.J.R., Barker, S., Becker, J., Hall, I.R., and Knorr, G. (2013) Abrupt changes in deep Atlantic circulation during the transition to full glacial conditions. Paleoceanography, 28, 253-262. https://doi.org/10.1002/palo.20025
  40. Wei, G., Liu, Y., Li, X., Shao, L., and Liang, X. (2003) Climatic impact on Al, K, Sc and Ti in marine sediments: Evidence from ODP Site 1144, South China Sea. Geochemical Journal, 37, 593-602. https://doi.org/10.2343/geochemj.37.593
  41. Xu, Z., Li, T., Chang, F., Wan, S., Choi, J., and Lim D. (2014) Clay-sized sediment provenance in the northern Okinawa Trough since 22 kyr BP and its paleoenviromental implication. Palaeogeography, Plaeoclimatology, Palaeoecology, 399, 236-246. https://doi.org/10.1016/j.palaeo.2014.01.016
  42. Yao, Z., Liu, Y., Shi, X., and Suk, B.-C. (2012) Paleoenvironmental changes in the East/Japan Sea during the last 48 ka: indications from high-resolution X-ray fluorescence core scanning. Journal of Quaternary Science, 27, 932-940. https://doi.org/10.1002/jqs.2583
  43. Yi, S. (2011) Holocene vegetation responses to East Asian Monsoonal changes in South Korea. In: Blanco, J. and Kheradmand, H. (eds.), Climate Change, 157-178.

Cited by

  1. Mineralogical Characteristics of Marine Sediments Cores from Uleung Basin and Hupo Basin, East Sea vol.28, pp.1, 2015, https://doi.org/10.9727/jmsk.2015.28.1.71
  2. 동해 후포분지의 Pockmark 해저지형 특성 연구 vol.52, pp.6, 2019, https://doi.org/10.9719/eeg.2019.52.6.561
  3. 강릉-동해 연안 퇴적물의 점토광물에 관한 연구 vol.33, pp.3, 2014, https://doi.org/10.22807/kjmp.2020.33.3.175
  4. Holocene sedimentation in the Hupo Trough of the southwestern East Sea (Japan Sea) and development of the East Korea Warm Current vol.31, pp.7, 2014, https://doi.org/10.1177/09596836211003238