• Title/Summary/Keyword: Humification

Search Result 32, Processing Time 0.029 seconds

Amino Acids in Humic Acids Extracted from Organic By-product Fertilizers (유기질 부산물 비료에서 추출한 부식산 중 아미노산 특성)

  • Yang, Jae-E.;Kim, Jeong-Je;Shin, Myung-Kyo;Park, Yong-Ha
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.2
    • /
    • pp.128-136
    • /
    • 1998
  • Most of total nitrogen in the surface soil exists in organic forms, of which amino acid-N is the major fraction. By-product fertilizers provide soil with humic substances, and humic acid is an essential component of humus. Amino acids(AAs) are easily converted to inorganic-N forms and thus play an important role in N fertility. This experiment was conducted to investigate the contents and distributions of AAs in humic acids which were extracted from the commercial by-product fertilizers of different composting materials. Total contents of AAs in humic acids ranged from 1.2 to 5.6%, of which neutral AAs were the highest with ranges of 0.8~4.5%. AAs contents in fertilizers composted from the plant residues such as leaf litter, sawdust and bark were in an order of neutral>acidic>basic AAs. In contrast, those from animal wastes, such as poultry and pig manures, were in an order of neutral>basic>acidic AAs. Distributions of total, acidic and neutral AAs were in the respective order of leaf litter>sawdust>pig manure>poultry manure>peat, bark>sawdust>leaf litter>peat and leaf litter>sawdust>bark>peat. Distributions of the basic AAs were in the reversed order of the acidic AAs. In bark fertilizer with increasing compost maturity, contents of the acidic AAs were increased in compensation for the decreases in those of neutral and basic AAs. Results demonstrated that distributions of amino acids in humic acid of by-product fertilizers were different from composting raw materials and degrees of humification.

  • PDF

Structural and Chemical Characterization of Aquatic Humic Substances in Conventional Water Treatment Processes (재래식 정수처리 공정에서 수질계 휴믹물질의 구조 및 화학적 특성분석)

  • Kim, Hyun-Chul;Yu, Myong-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.1
    • /
    • pp.11-16
    • /
    • 2005
  • Humic substances(HS) from raw and process waters at a conventional water treatment plant were isolated and extracted by physicochemical fractionation methods to investigate their characteristics. They are characterized for their functionality, chemical composition, and spectroscopic characteristics using FT-IR(Fourier transform infrared) and $^1H-NMR$(proton nuclear magnetic resonance) spectroscopy. Humic fraction gradually decreased from 47.2% to 26.4%(from 0.97 to 0.54 mgC/L) through conventional water treatment processes. Concentration of phenolic groups in the HS fraction gradually decreased from 60.5% to 21.8%(from 12.2 to $6.0\;{\mu}M/L$ as phenolic-OH) through water treatment. In the case of carboxylic groups, the concentration increased from 39.5% to 46.9%(from 7.9 to $10.6\;{\mu}M/L$ as COOH) by pre-chlorination, but gradually decreased to 34.2%($9.4\;{\mu}M/L$ as COOH) through sedimentation and sand filtration. From the results of the FT-IR and $^1H-NMR$ spectra of HS, the content of carboxylic groups increased and ratio of aliphatic protons to aromatic protons($P_{Al}/P_{Ar}$) also increased through water treatment, which indicated the increase of aliphatic compounds.

Transformation of Endocrine Disrupting Chemicals (EDCs) by Manganese(IV) Oxide (망간산화물을 이용한 내분비계장애물질의 변환에 관한 연구)

  • Lee, Seung-Hwan;Choi, Yong-Ju;Chung, Jae-Shik;Nam, Taek-Woo;Kim, Young-Jin;Nam, Kyoung-Phile
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.1
    • /
    • pp.44-50
    • /
    • 2009
  • The occurrence of endocrine disrupting compounds (EDCs), chemicals that interfere with human hormone system, are increasing in the freshwater, waste water and subsurface as well. In this study, we determined the reactivity of three EDCs in the presence of birnessite. In aqueous phase, bisphenol A, 2,4-dichlorophenol and 17${\beta}$-estradiol, which possesses phenoxy-OH, were very rapidly transformed by birnessite: up to 99% of initial concentrations (50 mg/L for bisphenol A, 100mg/L for 2,4-dichlorophenol, and 1.5mg/L for 17${\beta}$-estradiol) were destroyed within 60 minutes. Especially, bisphenol A was the most reactive chemical, disappearing by 99% in a few minutes. The reaction occurred on the surface of birnessite, showing a linear increase of first-order kinetic constants with the increase of the surface area of birnessite. In soil slurry phase, the reactivity of birnessiteto EDCs was faster than in aqueous phase probably due to the cross coupling reaction of phenoxy radicals with soil organic matter. Considering the rapid transformation of the EDCs in the both phases, this oxidative cross coupling reaction mediated by birnessite would be an effective solution for the remediation of EDCs in environmental media, especially in soil.

Contents of Monosaccharides in the Hydrolysates of Some Forest Soil Horizons (삼림토양(森林土壤)의 층위별(層位別) 가수분해물중(加水分解物中) 단당류(單糖類)의 함량(含量))

  • Kim, Jeong-Je;Jang, Yong-Seon;Shin, Young-Oh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.22 no.3
    • /
    • pp.191-196
    • /
    • 1989
  • Monosaccharide content of four forest soils were analyzed. Two soils under coniferous forest trees and another two under duciduous forest trees of Mts. Zeombong and Odae in Kangweon-Do were sampled from the surface horizon down into the subhorizons. 1. The largest amount of monosaccharide is found in the surface organic horizon of each soil and with increasing depth the amount decreases as might be expected considering total organic matter content. 2. Hexoses (galactose, glucose, mannose) predominate over pentoses (arabinose, ribose, xylose) and deoxyhexoses (fucose, rhamnose), the latter being in the smallest amount. Glucose is the most abundant monosaccharide in all samples regardless of vegetation of soil or depth. In general the content of each monosaccharide follows the order of glucose > manrtose > galactose > arabinose > xylose > rhamnose > fucose > ribose. 3. Very little amount of ribose is present even in organic horizons of coniferous forest soils. In samples taken from deciduous forest soils ribose is virtually absent. 4. The relative proportion of monosacchaiide to the total soil organic matter decreases with increasing depth, which may be resulted from the effect of prolonged humification. The total monosaccharide in the organic surface layer amounts to 27-50% of the total organic carbon or 15.7-29% of the total organic matter. Hexoses alone take the largest share of 20-38% of the carbon, or 12-22% of the organic matter.

  • PDF

A Study on the Characteristics of Humic Materials Extracted from Decomposing Plant Residues -IV. Amino Acids in the Hydrolysates of Humic Acids Extracted from Straw of Wheat and Rye (식물성(植物性) 유기물질(有機物質)의 부숙과정중(腐熟過程中) 부후물질특성(腐朽物質特性)에 관(關)한 연구(硏究) -IV. 밀짚과 호밀짚의 부식산(腐植酸)의 산가수분해용액중(酸加水分解溶液中) Amino 산(酸)의 함량(含量))

  • Kim, Jeong-Je;Lee, Wi-Young;Shin, Young-Oh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.21 no.4
    • /
    • pp.416-421
    • /
    • 1988
  • Humic acids were extracted from straw of wheat and rye at three different stages of decomposition. Contents and distribution of amino acids in the hydrolysates of humic acids were examined and the results obtained can be summarized as the following: 1. Contents and distribution of amino acids in the hydrolysates of humic acids differ from plant to plant and from one stage of decomposition to another. 2. Neutral amino acids as a group take the largest portion of the total amino acids in humic acid hydrolysates followed by the acidic and the basic. 3. The total amount of amino acids in decomposed wheat straw at the 90 days of humification was greater than that in the case of rye straw. 4. Contents of amino acids other than arginine, histidine and tyrosine were increased in the case of wheat straw, while only the contents of lysine, phenylalanine, tyrosine and methionine were observed to increase in the case of rye straw. 5. Exceptionally high contents of phenylalanine and tyrosine were measured in the hydrolysate from rye straw taken at the end of experimental period. 6. No amount of arginine was detected in any hydrolysate of humic acids from decomposed plant residues.

  • PDF

Characterization of microbial communities and soil organic carbon degradation associated with the depth and thawing effects on tundra soil in Alaska (Alaska 툰드라 토양의 깊이 및 해동 영향에 따른 미생물 군집과 토양 유기 탄소 분해 특성)

  • Park, Ha Ju;Kim, Dockyu;Park, Hyun;Lee, Bang Yong;Lee, Yoo Kyung
    • Korean Journal of Microbiology
    • /
    • v.52 no.3
    • /
    • pp.365-374
    • /
    • 2016
  • In high-latitude regions, temperature has risen ($0.6^{\circ}C$ per decade) and this leads to the increase in microbial degradability against soil organic carbon (SOC). Furthermore, the decomposed SOC is converted into green-house gases ($CO_2$ and $CH_4$) and their release could further increase the rate of climate change. Thus, understanding the microbial diversity and their functions linked with SOC degradation in soil-thawing model is necessary. In this study, we divided tundra soil from Council, Alaska into two depth regions (30-40 cm and 50-60 cm of depth, designated as SPF and PF, respectively) and incubated that for 108 days at $0^{\circ}C$. A total of 111,804 reads were obtained through a pyrosequencing-based metagenomic study during the microcosm experiments, and 574-1,128 of bacterial operational taxonomic units (OTUs) and 30-57 of archaeal OTUs were observed. Taxonomic analysis showed that the distribution of bacterial taxa was significantly different between two samples. In detail, the relative abundance of phyla Actinobacteria and Firmicutes largely increased in SPF and PF soil, respectively, while phyla Crenarchaeota was increased in both soil samples. Weight measurement and gel permeation chromatography of the SOC extracts demonstrated that polymerization of humic acids, main component of SOC, occurred during the microcosm experiments. Taken together our results indicate that these bacterial and archaeal phyla could play a key function in SOC degradation and utilization in cold tundra soil.

A Study on the Characteristics of Humic Materials Extracted from Decomposing Plant Residues -III. Amino Acids in the Acid Hydrolysates of Humic Acids Extracted from Straw of Rice and Barley (식물성(植物性) 유기질(有機質)의 부숙과정중(腐熟過程中) 부식특성(腐植特性)에 관(關)한 연구(硏究) -III. 볏짚과 보리짚부식산(腐植酸)의 산가수분해(酸加水分解) 용액중(溶液中) Amino 산(酸)의 함량(含量))

  • Kim, Jeong-Je;Lee, Wi-Young;Shin, Young-Oh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.21 no.3
    • /
    • pp.301-306
    • /
    • 1988
  • Contents and distribution of amino acids in the hydrolysates of humic acids extracted from straw of rice and barley at three different dates during decomposition were examined. The results obtained from this study may be summed up as the following: 1. There are differences between the humic acid hydrolysates from rice straw and barley straw in regards of composition of humic acids and distribution of amino acids. 2. Neutral amino acids as a group occupy the largest share, followed by acidic amino acids and basic amino acids. 3. The total amount of amino acids per gram of humic acid is greater in straw of rice than in straw of barley. 4. With the humification progressing the content of lysine increases, but the content of histidine decreases. In general glycine, glutamic acid, aspartic acid, alanine and leucine constitute the 5 predominant amino acids in all hydrolysates. 5. Arginine is not detected at all in any of the hydrolysates of humic acids obtained from humified materials. 6. The presence of phenylalanine and tyrosine is an evidence for the aromatic characteristics of humic acids.

  • PDF

Chemical and Spectroscopic Characterization of Peat Moss and Its Different Humic Fractions (Humin, Humic Acid and Fulvic Acid) (피트모스에서 추출한 휴믹물질(휴믹산, 풀빅산, 휴민)의 화학적 및 분광학적 물질특성 규명)

  • Lee Chang-Hoon;Shin Hyun-Sang;Kang Ki-Hoon
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.4
    • /
    • pp.42-51
    • /
    • 2004
  • Peat humin(p-Humin), humic acid(p-HA) and fulvic acid(p-FA) were isolated from Canadian Sphagnum peat moss by dissolution in 0.1M NaOH followed by acid precipitation. After purification cycles, they are characterized for their elemental compositions and, acid/base properties. Functionalities and carbon structures of the humic fractions were also characterized using FT-IR and solid state $^{13}C$-NMR spectroscopy. Those results are compared with one another and with soil humic substances from literatures. Main purpose of this study was to present a chemical and spectroscopic characterization data of humic substance from peat moss needed to evaluate its environmental applicability. The relative proportions of the p-Humin, p-HA and p-FA in the peat moss was $76\%,\;18\%,\;and\;3\%$, respectively, based on the total organic matter content ($957{\pm}32\;g/kg$). Elemental composition of p-Humin were found to be $C_{1.00}H_{1.52}O_{0.79}N_{0.01}$ and had higher H/C and (N+O)/C ratio compared to those of p-HA($C_{1.00}H_{1.09}O_{0.51}N_{0.02}$) and p-FA($C_{1.00}H_{1.08}O_{0.65}N_{0.01}$). Based on the analysis of pH titration data, there are two different types of acidic functional groups in the peat moss and its humic fractions and their proton exchange capacities(PEC, meq/g) were in the order p-FA(4.91) >p-HA(4.09) >p-Humin(2.38). IR spectroscopic results showed that the functionalities of the peat moss humic molecules are similar to those of soil humic substances, and carboxylic acid(-COOH) is main function group providing metal binding sites for Cd(II) sorption. Spectral features obtained from $^{13}C$-NMR indicated that peat moss humic molecules have rather lower degree of humification, and that important structural differences exist between p-Humin and soluble humic fractions(p-HA and p-FA).

Proton Affinity Distributions of Humic Acid Extracted from Upland and Paddy Soils (논·밭토양으로부터 추출한 Humic Acid의 수소이온 친화력 분포)

  • Jeong, Chang-Yoon;Park, Chan-Won;Kim, Jeong-Gyu;Lim, Soo-Kil
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.4
    • /
    • pp.429-439
    • /
    • 1999
  • Potentiometric titration data were collected for some humic acids purified from Korean upland and paddy soils over a range of pH (3.0 - 11.0) with $NaNO_3$ background electrolyte concentrations (0.01, 0.10, 0.50 and 1.00 M). The data were applied to model A and V which included both intrinsic heterogeneity of humic materials and electrostatic interaction influences on binding sites. The elemental analysis were conducted for various type of humic samples. The $E_4/E_6$ ratio proposed negative correlation with the total carboxyl groups ($r^2$= 0.9988). The charge ($cmol_c\;kg^{-1}$) on the humic acids became more negative as the ionic strength increased. In both continuous and batch titrations, the ionic strength effect was greater in Namweon series (pH 6.39) than others at pH 5.00. The effect of ionic strength on surface charge appears to be greater in batch titrations. This could suggest that continuous titrations do not represent an equilibrium state and the effects of electrolyte concentration was not fully realized during the course of titrations. Both models described experimental data obtained from continuous and batch titrations well over a range of ionic strengths. Model A is more simpler than model V but adaptes more fitted parameters. Thus, the observed change in apparent binding constants with surface charge is regarded solely due to electrostatic influences rather than functional group heterogeneity. However, Model V is more mechanistically realistic in a number of discrete ligand binding sites.

  • PDF

Effect of Pyroligneous Acid Liquor on the Maturity of Pig Manure Compost (목초액 처리가 돈분퇴비의 부숙도에 미치는 영향)

  • Lee, Jong-Eun;Hong, Joo-Hwa;Chang, Ki-Woon;Hwang, Joon-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.2
    • /
    • pp.101-107
    • /
    • 2005
  • To investigate the effect of pyroligneous acid liquor (PAL) on the maturity of pig manure compost, PAL was treated to the compost piles. The treatments included applications of 100 and 300 times diluted PAL in addition to the control. The compost piles were stirred in three times at the 1st, 10th, and 25th day of composting. Temperature in the compost pile of control treatment increased from 28 to $60^{\circ}C$ within 10 days and remained nearly at the level until 30th day, then it began to decrease. On the other hand, temperature of the PAL-100 and PAL-300 treatments reached 65 to $70^{\circ}C$ within 8 days and became stabilized until 30th day, then the temperature decreased to about $28^{\circ}C$. However, the temperature of control was stabilized approximately at the 40th day. Initially, the pH of control treatment dropped from 8.2 to slightly above pH 8.0 during 4th day, but that of the PAL-100 treatment declined to 7.8. Among treatments, pH value of PAL-100 treatment was the lowest, which was about 7.3 after becoming stabilization. Also the germination index (GI) was increased at all treatments. The C/N ratio range of PAL-100 treatment was better balanced than others and was at 24.3. Moreover the round paper chromatogram of extracted solution of compost of PAL-100 treatment was the sharpest and clearest among treatments. The GI values of control, PAL-100, and PAL-300 in 60 days of composting were about 108, 120, and 118 in germination test using chinese cabbage, respectively. It can be concluded that the addition of diluted PAL solution is effective in composting of pig manure.