• Title/Summary/Keyword: Humidity measurement

Search Result 468, Processing Time 0.038 seconds

A Study on Measurement of Capacitive Electrode Motion Artifact (용량성 전극의 동잡음 측정 장치 연구)

  • Lim, Yong Gyu
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.3
    • /
    • pp.137-141
    • /
    • 2017
  • The indirect-contact bio-electric measurements using capacitive electrodes show large motion artifacts in comparison with conventional direct-contact measurements. It is necessary to measure the motion artifacts quantitatively, for the researches of reducing the motion artifacts. In this study, a device for quantitative measurement of motion artifacts was built. Using the device, an electrode was rubbed against some cloth(cotton) and the voltage variation of the electrode was measured as motion artifact in several environmental conditions(temperature and relative humidity). The measured waveforms agreed with that expected by the triboelectricity and the prior observations of the motion artifacts. Therefore, the results demonstrated the usability of the measurement system built in this study. The measurement system will be a great contribution to future research for reducing motion artifact.

Air-tightness Test by Silicagel on Museum Cases (조습제(燥濕濟)(Art-Sorb)를 이용한 벽부형진열장(壁附形陳列欌) 밀폐도(密閉度) 간접측정(間接測淀))

  • Yu, Hei-sun;Kim, Myoung-nam;Lee, Sung-eun
    • Conservation Science in Museum
    • /
    • v.3
    • /
    • pp.71-78
    • /
    • 2001
  • The airtightness of museum cases in museums was measured by using CO2 tracing gas, but it has been pointed that it has a problem with measuring the airtightness of a museum case which has a hole inside before it is used or while is being used. So studies tried to come up with alternatives which make it possible to measure the airtightness of a museum case before it is used or while it is being used if necessary by indirectly measuring the airtightness of the museum case without changing its form. Indirect measuring is done by measuring the change of Art-sorb weight and the change of temperature and humidity inside the museum case. Experiments were made for 12 days with three builtin wall case installed at the same place without turning on the lights but with Art-sorb and the data logger of temperature and humidity put into museum case. The change rate was produced with the change of temperature and humidity inside the museum case divided by that of those around museum case. As a result, the temperature change rate of museum case A(0.67) was lower than that of museum case B(0.69) or museum case C(0.79). The humidity change rate of museum case A(0.12) was lower than that of museum case B(0.19) or museum case C(0.72) showing that its airtightness was the best. Also in the direct airtightness measurement by CO2 tracing gas, the air exchange rate was compared with the humidity change rate by Art-sorb in the indirect measurement.

Leakage Rates Measurement System Development of NPP Primary Containment using Wireless Data Communication Method (원전 격납건물 누설시험용 무선데이터전송을 적용한 시험장치 개발)

  • Ryu, Jae-Kyu;Sohn, Chang-Ho;Hwang, Hee-Jung;Kim, Gun-Soo;Choi, Kyong-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.916-919
    • /
    • 2003
  • In this paper, we deal with a development of measurement system to apply the leakage rates test of primary containment in nuclear power plant. The measurement test about leakage rates in primary containment is one sort of test to prove safety of nuclear power plant. The parameters which are measured to calculate leakage rates are drybulb temperature, dew point temperature(or relative humidity), absolute pressure and flow. Overall, the measurement system consists of sensor module for data acquisition of the parameters, transfer module for wireless data communication and control module to control system and to calculate leakage rates. Because existing measurement systems are difficult to set in field, we pursued convenience of use, we applied wireless data communication and individual form module using battery. We also changed for the better in confidence. Recently, we are developing a drybulb temperature and a dew point temperature sensor module. We describe about function of developed measurement system, its standard and an plan for verification of measurement system.

  • PDF

Effect of $M_{2}CO_{3}$(M=Li, Na) Addition on the Humidity Sensitivity of $V_{2}O_{5}$-doped $TiO_2$ ($V_{2}O_{5}$를 dopant로 한 $TiO_2$의 감습에 미치는 $M_{2}CO_{3}$(M=Li, Na)의 영향)

  • 강이국;송창열;신용덕
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.343-346
    • /
    • 1995
  • In this paper, the effect of alkaline oxides on the humidity sensitivity of $V_2O_{5}$(2mol%)-doped $TiO_2$(98mol%) was investigated as functions of $Li_{2}Co_{3}$, $Na_{2}Co_{3}$. III-1. Measurement of Density. When the mole% of $Li_2$O is varied 0,1,2,5mol%, the more the mole% of additives is increased, the more difference of bulk and apparent density is largely narrowed. The difference of two densities of sample containing 2mol% $Na_2O$ was large all the moat. The sample containing 1mol% $Na_2O$ was small most. III-2. Observation of porosity. The porosity and total intrusion volume according to various amounts of $Li_2O$ was reduced and those of sample containing 2mol% $Na_2O$ as 31.13%, 0.1155mL/g was the highest and 1mol% $Na_2O$ was lowed most and 5, 10mol% $Na_2O$ was more high compare with sample without alkaline oxides. III-3. Characteristic of humidity sensitivity. 1. Impedance of samples containing $Li_2O$ was high compare with sample without alkaline oxides, so we thought it showed Poor sensitivity because it have no impedance changing rapidly as function of relative humidity. 2. When the humidity was increasing from 30RH% to 90RH%, the impedance of sample containing 2mol% $Na_2O$ at 120HZ changed exponential rapidly from 6${\times}$$10^{7}$$\Omega$) to 1.25${\times}$$10^4$$\Omega$. At under 50RH% and over 50RH%, the humidity sensitivity of samples containing 2mol% $Na_2O$ was best especially in the range of the low humidity. III-4. Characteristic of TG curves. When algal me oxide $M_{2}CO_{3}$(M=Li, Na) were added into $V_{2}O_{5}$-doped $TiO_2$, the stability of humidity sensitivity of samples containing amounts of $Li_2O$ was unstable. The samples containing 1mol% $Na_2O$ was unstable.

  • PDF

Sensing and Interfacial Evaluation of Ni Nanowire Strands/Polymer Composites using Electro-micromechanical Technique (Electro-Micromechanical 시험법을 이용한 Ni Nanowire Strands 강화 고분자 복합재료의 Sensing과 계면 물성 평가)

  • Kim, Sung-Ju;Jung, Jin-Gyu;Park, Joung-Man
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.141-144
    • /
    • 2005
  • Sensing and interfacial evaluation of Ni nanowire strands/polymer composites were investigated using Electro-micromechanical technique. Electro-micromechanical techniques can be used as sensing method for micro damage, loading, temperature of interfacial properties. Using Ni nanowire strands/silicone composites with different content, load sensing response of electrical contact resistivity was investigated under tensile and compression condition. The mechanical properties of Ni nanowire strands with different type/epoxy composites were measured using uniformed cyclic loading and tensile test. Ni nanowire strands/epoxy composites showed humidity and temperature sensing within limited ranges, 20 vol% reinforcement. Some new information on temperature and humidity sensing plus loading sensing of Ni nanowire strands/polymer composites could be obtained from the electrical resistance measurement as a new concept of the nondestructive interfacial evaluation.

  • PDF

A Measurement and Evaluation on the Indoor Thermal Conditions in Spring of a New Training ship (신조 운항실습선의 봄철 실내 온열환경 실측평가)

  • Shin, Dong-Keol;Lee, Jin-Uk;Lee, Hyong-Ki;Park, Youn-Cheol;Hwang, Kwang-Il
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.8
    • /
    • pp.939-946
    • /
    • 2007
  • The purpose of this study is to measure and analyze the ship's indoor thermal conditions and also to integrate experimental database of those, supplied and controlled by ship's HVAC. On this study, temperature, humidity and air volume of 6 different needs' cabin are measured on a newly-launched training ship during 2nd through 5th of April, 2007. Followings are the results of this study. (1)Because only partial loads are needed in spring season, the air volume from diffusers are measured as below 20%. (2)The temperatures are ranged between $20{\sim}25^{\circ}C$ and those are within comfort temperature range proposed by AHREA. (3)But humidities in cabins are very low and it could be the reason of a cold and/or a skin disease. (4)From the student cabins' measurements which have different supply diffuser(s), it is clear that the design is suitable for this case. (5)Because of low humidity, only 16.1% among the measured data are satisfied with the comfort standard range proposed by ASHREA. To improve the predictability and the comfort, HVAC should maintain the humidity as $40{\sim}60%$.

An Experimental Study of Underexpanded Moist Air Jet Impinging on a Flat Plate

  • Lee, D.W.;S.C. Baek;S.B. Kwon;Kim, H.D.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.768-773
    • /
    • 2004
  • When a gas expands through a convergent nozzle in which the ratio of the ambient to the stagnation pressures is higher than that of the critical one, the issuing jet from the nozzle is underexpanded. If a flat plate is placed normal to the jet at a certain distance from the nozzle, a detached shock wave is formed at a region between the nozzle exit and the plate. In general, supersonic moist air jet technologies with nonequilibrium condensation are very often applied to industrial manufacturing processes. In spite of the importance in major characteristics of the supersonic moist air jets impinging to a solid body, its qualitative characteristics can not even know. In the present study, the effect of the nonequilibrium condensation on the underexpanded moist air jet impinging on a vertical flat plate is investigated experimentally. Flow visualization and impact pressure measurement are performed for various relative humidities and flat plate positions. The obtained results show the plate shock and Mach disk are dependent on the nozzle pressure ratio and the relative humidity, but for a given nozzle pressure ratio, the diameters of the plate shock and Mach disk depend on the stagnation relative humidity. The impact pressure deviation from the flow of without condensation is large, as the relative stagnation humidity increases.

  • PDF

Effects of heat stress on body temperature, milk production, and reproduction in dairy cows: a novel idea for monitoring and evaluation of heat stress - A review

  • Liu, Jiangjing;Li, Lanqi;Chen, Xiaoli;Lu, Yongqiang;Wang, Dong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.9
    • /
    • pp.1332-1339
    • /
    • 2019
  • Heat stress exerts a substantial effect on dairy production. The temperature and humidity index (THI) is widely used to assess heat stress in dairy operations. Herein, we review the effects of high temperature and humidity on body temperature, feed intake, milk production, follicle development, estrous behavior, and pregnancy in dairy cows. Analyses of the effects of THI on dairy production have shown that body temperature is an important physiological parameter in the evaluation of the health state of dairy cows. Although THI is an important environmental index and can help to infer the degree of heat stress, it does not reflect the physiological changes experienced by dairy cows undergoing heat stress. However, the simultaneous measurement of THI and physiological indexes (e.g., body temperature) would be very useful for improving dairy production. The successful development of automatic detection techniques makes it possible to combine THI with other physiological indexes (i.e., body temperature and activity), which could help us to comprehensively evaluate heat stress in dairy cows and provide important technical support to effectively prevent heat stress.

Development of Prediction Models of Dressroom Surface Condensation - A nodal network model and a data-driven model - (드레스룸 표면 결로 발생 예측 모델 개발 - 노달 모델과 데이터 기반 모델 -)

  • Ju, Eun Ji;Lee, June Hae;Park, Cheol-Soo;Yeo, Myoung Souk
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.3
    • /
    • pp.169-176
    • /
    • 2020
  • The authors developed a nodal network model that simulates the flow of moist air and the thermal behavior of a target area. The nodal network model was enhanced using a parameter estimation technique based on the measured temperature, humidity, and schedule data. However, the nodal model is not good enough for predicting humidity of the target space, having 55.6% of CVRMSE. It is because re-evaporation effect could not be modeled due to uncertain factors in the field measurement. Hence, a data-driven model was introduced using an artificial neural network (ANN). It was found that the data-driven model is suitable for predicting the condensation compared to the nodal model satisfying ASHRAE Guideline with 3.36% of CVRMSE for temprature, relative humidity, and surface temperature on average. The model will be embedded in automated devices for real-time predictive control, to minimize the risk of surface condensation at dressroom in an apartment housing.

Laboratory/Field evaluation and calibration method of low-cost PM sensor for indoor PM2.5, PM10 measurement (실내 미세먼지 측정을 위한 저가형 PM 센서의 실험실/현장 평가 및 보정 방법)

  • Doheon, Kim;Dongmin, Shin;Jungho, Hwang
    • Particle and aerosol research
    • /
    • v.18 no.4
    • /
    • pp.109-127
    • /
    • 2022
  • Recently, low-cost particulate matter (PM) sensors have been widely used in monitoring mass concentration. Maintaining the accuracy of the sensors is important and requires rigorous performance evaluation and calibration. In this study, two commercial low-cost PM sensors(LCS), Plantower PMS3003 and Plantower PMS7003, were evaluated in the laboratory and field with a reference-grade PM monitor (GRIMM 11-D). Laboratory evaluation was conducted with single/mixed particles of PSL (Poly Styrene Latex) in an acrylic chamber at 20℃ and relative humidity of 20%. Field evaluation was conducted inside a building of Yonsei University (Shinchon) from February 12 to March 31, 2022. In both evaluations, LCS measured values became different from reference measured values when the relative humidity was high or the outdoor air PM10/PM2.5 ratio was high. Based on the field evaluation, the LCS measured values were corrected through four different regression analysis models. As a result, the multivariate polynomial regression analysis model showed highest matching with the reference PM monitor (PM2.5 >0.9, PM10 >0.85). In this model, the PM10/PM2.5 ratio and relative humidity were chosen as independent variables.