• Title/Summary/Keyword: Humidity freezing

Search Result 46, Processing Time 0.024 seconds

Influence of Freezing Rate on the Aroma Retention in a Freeze Drying System (동결건조 시스템에서 동결속도가 향미물질 보존에 미치는 영향)

  • Byun, Myung-Hee;Choi, Mi-Jung;Lee, Sung;Min, Sang-Gi
    • Food Science of Animal Resources
    • /
    • v.18 no.2
    • /
    • pp.176-184
    • /
    • 1998
  • The objective of this study was to investigate the effects of freezing rate on aroma retention and to examine the mechanism of aroma retention during freeze drying process. Our experiments were carried out with self-manufactured freeze-dryer. Gelatin gels (2% w / w, 80${\times}$20mm) containing diacetyl(2mg/ml) were frozen unidirectionally (Neumann's model) from the bottom at -45, -30, -20, and -15$^{\circ}C$ and followed with freeze-drying. Under the upper conditions we measured freezing rate and the change of temperature and pressure during freeze drying. Freeze-dried gelatins were cut horizontally into 5 mm thickness from the bottom measured and diacetly contents. Besides, we observed the effect of the relative humidity of the diacetyl contents freeze-dried gelatin during storage. The retained diacetyl content was increased at high freezing temperature and in order of 0∼5, 5∼10, 10∼15, 15∼20 mm section from the bottom of the sample. It was observed that the retained diacetyl content was high in 15∼20 mm section. The retained diacetyl content and freeze-dried gelatin stored in the condition of high relative humidity was decreased significantly but in the low relative humidity case, was it decreased in small amount. The results of our experiment resents that the low temperature freezing and low humidity storing condition is effective for preserving aroma compound in food.

  • PDF

Phase transition features of binary Co-C eutectic temperature fixed-point (이원계 Co-C 공정계 온도 고정점의 특성)

  • Kim, Yong-Gyoo;Yang, In-Seok;Gam, Kee-Sool
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.381-386
    • /
    • 2005
  • A Co-C eutectic cell for thermocouple calibration was manufactured and tested to investigate its phase transition characteristics using Type B thermocouples. It was observed that the freezing plateaus were flatter than those of melting, but the melting points were closer to the true transition temperature than the freezing points. The expanded uncertainty of melting temperature was calculated not to exceed $0.2^{\circ}C$ (k = 2). Based on the observed results, the melting process is recommended for the calibration of thermocouples.

Case Studies on Freezing Rain over the Korean Peninsula Using KLAPS (KLAPS를 이용한 한반도 어는비 사례 연구)

  • Kwon, Hui-Nae;Byun, Hi-Ryong;Park, Chang-Kyun
    • Atmosphere
    • /
    • v.25 no.3
    • /
    • pp.389-405
    • /
    • 2015
  • In this study, the occurrence circumstances of 3 cases (12 Jan 2006, 11 Jan 2008, 22 Feb 2009) when the freezing rain was observed at more than two observatories in a day with more than three times each observatory, were investigated. Following the advanced study about the same cases, we have tried to find more delicate differences in using the Korea Local Analysis and Prediction System (KLAPS; 5 km reanalysis data) that has the smallest grid scale at current situation. As results, three common characteristics are found: (1) Just before the occurrence of the freezing rain, the wind direction was consistently continuous and the wind speed was constant or gradually increased for at least 3 hr more. (2) Surface air temperature (Relative humidity) was respectively $3.08^{\circ}C$ (28.76%), $0.47^{\circ}C$ (50.07%) and $-3.60^{\circ}C$ (71.07%) 3 hr ago to break out the freezing rain. It means the freezing rain occurs in a wide range of atmospheric environments. However, the closer it got to the occurrence time of the freezing rain, the closer the surface air temperature was to $0^{\circ}C$, and the bigger the humidity of the surface air was. (3) The liquid precipitation formed in the upper atmosphere, met a cold advection bellower than 950 hPa level and suspected to be changed to the super-cooled condition.

Stable Anisotropic Freezing Modeling Technique Using the Interaction between IISPH Fluids and Ice Particles (안정적이고 이방성한 빙결 모델링을 위한 암시적 비압축성 유체와 얼음 입자간의 상호작용 기법)

  • Kim, Jong-Hyun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.26 no.5
    • /
    • pp.1-13
    • /
    • 2020
  • In this paper, we propose a new method to stable simulation the directional ice shape by coupling of freezing solver and viscous water flow. The proposed ice modeling framework considers viscous fluid flow in the direction of ice growth, which is important in freezing simulation. The water simulation solution uses the method of applying a new viscous technique to the IISPH(Implicit incompressible SPH) simulation, and the ice direction and the glaze effect use the proposed anisotropic freezing solution. The condition in which water particles change state to ice particles is calculated as a function of humidity and new energy with water flow. Humidity approximates a virtual water film on the surface of the object, and fluid flow is incorporated into our anisotropic freezing solution to guide the growth direction of ice. As a result, the results of the glaze and directional freezing simulations are shown stably according to the flow direction of viscous water.

Experimental Study on Freezing-Thawing and Warm-Moisture Resistance of FRP Composites used in Strengthening RC Members (FRP 복합체의 동결융해 및 고온.고습 저항성에 관한 실험 연구)

  • Choi, Ki-Sun;You, Young-Chan;Lee, Han-Seung;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.345-348
    • /
    • 2006
  • FRP composites which are used in strengthening existing structure are usually adhered to the concrete surface, their performance are directly affected by environmental condition such as freezing-thawing and moisture. Accordingly, it is required to evaluate bond durability between FRP composite and concrete as well as FRP materials itself. The durability characteristics of FRP composite for freezing-thawing are evaluated in this study with the variables of concrete strength, type of FRP composite, freezing-thawing conditions and freezing-thawing cycle. In addition, material durability of GFRP sheet for high temperature/high humidity condition are examined in this experimental study.

  • PDF

Development of a water meter freeze test device for predicting the freezing time based on AI (AI 기반 동파시기 예측을 위한 수도계량기 동파시험장치 개발)

  • Kim, Kuk-il;An, Sang-byung;Kim, Jin-hoon;Hong, Sung-taek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.233-234
    • /
    • 2021
  • The freezing of the water meter due to the cold wave in winter causes safety accidents caused by freezing and suspending the supply of tap water and various inconveniences. In this study, the water meter develops a test device similar to the environment in which the actual freezing occurs and tests repeatedly by changing the temperature, humidity, flow rate, pressure, valve improvement, pump operation status, etc. Based on the data obtained through this, it is planning to predict the timing of freezing by applying AI technology to correlation between freeze influencing factors.

  • PDF

An Experimental Study of Frost Formation on the Horizontal Cylinder (수평 실린더 표면의 착상에 대한 실험적 연구)

  • Paik, Sang-Jin;Lee, Yoon-Been;Ro, Sung-Tack
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.240-245
    • /
    • 2000
  • In this study, thickness, density and effective thermal conductivity of frost forming on the horizontal cylinder were measured with various air temperature and humidity. Reynolds number and temperature of cooling surface are controlled 17300 and $-l5^{\circ}C$ respectively. In each case of air temperature $5^{\circ}C,\;10^{\circ}C,\;15^{\circ}C,$ varying absolute humidity, experiments were executed. In measuring frost surface temperature and thickness of frost layer, infrared thermocouples and CCD camera were used. Frost was gathered from cylinder to measure mass of frost layer. Experimental data showed that the thickness and effective thermal conductivity of the frost layer increase with respect to time. Thickness of frost layer increase with humidity increasing, and density of frost layer increase with air temperature rising. Frost growth with air temperature and density of frost layer with humidity are affected by whether dew point is below or above freezing point.

  • PDF

Development of an Anti-Freezing Heating Cable Temperature Controller and Its Power Saving Effects Analysis (동파방지 발열선용 온도제어기 개발 및 전기에너지 절감 효과 분석)

  • Lee, Kihong;Lee, Jaejin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.10
    • /
    • pp.101-106
    • /
    • 2014
  • Although anti-freezing heating cable has been widely installed in most residential boiler pipe, there were excessive energy consumption and fire risk due to inadequate temperature control. In this paper, a new energy saving fire risk-free controller was developed by using microprocessing operation which include detection of not only boiler room temperature but also pipe surface one. Its actual effect has been verified to save more than a half of the energy consumption comparing to conventional controller through temperature and humidity chamber experiment.

The Compressive Strength and Durability Characteristics of Lime-Cement-Soil Mixtures (석회-시멘트 혼합토의 압축강도 및 내구 특성)

  • Oh, Sang-Eun;Yeon, Kyu-Seok;Kim, Ki-Sung;Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.1
    • /
    • pp.83-91
    • /
    • 2012
  • In this study, the compressive strength characteristics of lime-cement-soil mixtures, composed of lime, soil, and a small amount of cement, were investigated by performing the unconfined compression tests, the freezing and thawing tests, the wetting and drying tests and the permeability tests. The specimens were made by mixing soils with cement and lime. The cement contents were 0, 6, 8 and 10 %, and the lime contents were 2, 4, 5, 10, 15 and 20 % in weight. Each specimen was cured at constant temperature in a humidity room for 3, 7 and 28 days. The compressive strength characteristics of the lime-cement-soil mixtures were then investigated using the unconfined compression tests, freezing and thawing tests and the wetting and drying tests. Based on the test results, a discussion was made on the applicability of the lime-cement-soil mixtures as a construction material.

A Study on Cooling and Freezing During Summer Season in Deoksan-ri Eoreumgol (ice valley) Yeongdeok-gun (South Korea) (영덕군 덕산리 얼음골의 냉각 및 하계 결빙현상에 관한 연구)

  • Lee, Jin Kook;Shin, Jae Ryul;Jang, Yun Deuk
    • Journal of the Korean association of regional geographers
    • /
    • v.21 no.3
    • /
    • pp.608-617
    • /
    • 2015
  • This paper synthetically analyzes micrometeorological data and geomorphological features of Doeksan-ri Eoreumgol(ice valley) Yeongdeok-gun in order to investigate occurrence characteristics of the ice valley and a mechanism for freezing in summer. This ice valley is located in the distal end of a talus and intensity of cooling and freezing in summer seems to be related to morphology and dimensions of talus. Cooling in the ice valley is generated by cold air flows that move down to the bottom of talus from high mountains through pores and voids, then debris in talus is supercooled by the cold air. For it forms a stable state in and around voids cold air is stagnating in the lower end of talus. This causes freezing in summer at outpour points. Furthermore humidity condition of external air and vaporization heat is a key factor when freezing.

  • PDF