• Title/Summary/Keyword: Humidity Sensor

Search Result 638, Processing Time 0.024 seconds

A Study on Physical Properties of Carbon Nitride Films and Application of Sensor Materials (질화탄소막의 물리적 특성과 센서재료 응용에 관한 연구)

  • Kim, Sung-Yeop;Lee, Ji-Gong;Chang, Choong-Won;Lee, Sung-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.247-248
    • /
    • 2006
  • Carbon nitride films were evaluated that they had many advantages for miniature micro-humidity-sensors using the standard CMOS technology humidity sensing properties and CV characteristics of the carbon nitride films have been investigated for fabricating one chip HUSFET(Humidity Sensitive Field Effect Transistor) humidity sensors Carbon nitride films were deposited on silicon substrate with meshed electrodes by reactive RF magnetron sputtering system. The capacitor-type humidity sensor revealed good humidity-impedance characteristics with a wide range of relative humidity changes, decreasing $254k{\Omega}$ to $16k{\Omega}$ according to increase of relative humidity between 5% ~ 95% and the films were very stable on the Si wafer. These results reveal that $CN_x$ thin films can be used for Si based or HUSFET structure one chip micro-humidity sensors.

  • PDF

Humidity Sensitive Properties of Humidity Sensor Using Quaternized Cross-linked Copolymers of 4-Vinylpyridine (4차 염화 가교화된 4-vinylpyridine 공중합체들을 사용한 습도센서의 감습 특성)

  • 공명선;이성수;이임렬
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.4
    • /
    • pp.302-308
    • /
    • 2001
  • The polymers with various composition of 4-vinylpyridine (4-VP) with n-butyl acrylate (n-BA) and 2-hydroxypropyl methacrylate (HPMA) were synthesized as a humidity sensitive material and quaternized with 1.5-dibromopentane. Resistance versus relative humidity decreased with increase in the content of n-BA in the copolymer. The introduction of HPMA increased the resistance of the humidity sensor as well as enhanced the adherence to the alumina substrate. In the case of 4-VP/n-BA/HPMA=80/10.10, the hysteresis and temperature coefficient were $\pm$2%RH and -0.42∼0.46%RH/$\^{C}$. The average resistance at 30%RH, 60%RH and 90%RH are 3.1㏁, 155 ㏀ and 7.9 ㏀, respectively.

  • PDF

A Study on The Development of Humidity Sensor Using Polyimide Film (폴리이미드 박막을 이용한 습도 센서의 개발에 관한 연구)

  • Jeong, K.H.;Cho, D.H.;Lee, B.S.;Jeong, B.K.;Han, S.O.;Kim, Y.L.;Park, K.S.;Kim, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1233-1235
    • /
    • 1994
  • In this work, polyimide thin films fabricated by the electrophoretic deposition are investigated as a humidity sensing material. Capacitance and impedance are measured with increasing relative humidity to find the nature of the film. From the results, the polyimide humidity sensor is not classified impedance change type but capacitance change type and appear more sensitive in the region of higher humidity than that of lower humidity.

  • PDF

SELECTION OF THE SENSORS FOR THE ENVIRONMENTAL CONTROL SYSTEMS OF PIG-HOUSING IN TEMPERATE ZONE

  • Chang, Dong-Il;Chang, Hong-Hee
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.1126-1135
    • /
    • 1996
  • This study was conducted to select the sensors for measuring temperature, relative humidity, and air velocity among the major environmental factors affecting the pig productivity as a part of the study for the optimum production system model development of pig-housing. The study results are summarized as the follows : Two sensors , HMP233L and HANI, were tested for measuring temperature and relative humidity , Test results were analyzed by the statistical methods. And the sensor, HMP233L was selected as a proper sensor for temperature sand relative humidity measurement . An air velocity sensor was tested. Test results showed that its accuracy was low and incongruent for the air velocity measurement when it was lower than 4m/s.

  • PDF

Two-Chip Integrated Humidity Sensor Using Thin Polyimide Films (폴리이미드 박막을 이용한 투 칩 집적화 습도 센서)

  • 민남기;김수원;홍석인
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.9
    • /
    • pp.77-86
    • /
    • 1998
  • A two-chip humidity sensor system has been developed which consists of a capacitive sense element die and a CMOS interface chip. The sense element was fabricated using thin polyimide films on (100) silicon substrate and showed excellent linearity(0.72%FS), low hysteresis (<3%) and low temperature coefficient(-0.0285 ~-0.0542pF/K) over a wide range of relative humidity and temperature. The capacitance-relative humidity characteristic exhibited a drift of 2~3% after 9 weeks of exposure to 4$0^{\circ}C$/90%RH. The signal-conditioning circuitry was fabricated using an 1.2- ${\mu}{\textrm}{m}$, one poly double metal CMOS process. The measured output voltage of the sensor system was directly proportional to relative humidity and showed good agreement with theory.

  • PDF

Possible application of single-walled carbon nanotube transistors for humidity sensor (단겹 탄소나노튜브 트랜지스터의 나노습도센서 응용가능성 연구)

  • Na, Pil-Sun;Kim, Hyo-Jin;Lee, Young-Hwa;Lee, Jeong-O;Kim, Jin-Hee
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.331-336
    • /
    • 2005
  • The influence of water molecule on the electrical properties of single-walled carbon nanotube field effect transistors (SWNT-FETs) was reported. Conductance suppression was observed with the increase of the humidity. This can be explained by doping of the SWNT-FETs, which has p-type semiconductor characteristic, with the water molecules acting as an electron donor. However, after 65 % of humidity, conductance of the SWNT-FETs started to increase again, due to the opening of electron channels. Upon annealing at $400^{\circ}C$ in Ar atmosphere, conductance increases more than 500 %, and the threshold voltage shifts toward further positive gate voltages. The results of this experiment support possible application of single-walled carbon nanotubes for humidity sensing material.

Humidity Dependence Removal Technology in Oxide Semiconductor Gas Sensors (산화물 반도체 가스 센서의 습도 의존성 제거 기술)

  • Jiho Park;Ji-Wook Yoon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.4
    • /
    • pp.347-357
    • /
    • 2024
  • Oxide semiconductor gas sensors are widely used for detecting toxic, explosive, and flammable gases due to their simple structure, cost-effectiveness, and potential integration into compact devices. However, their reliable gas detection is hindered by a longstanding issue known as humidity dependence, wherein the sensor resistance and gas response change significantly in the presence of moisture. This problem has persisted since the inception of oxide semiconductor gas sensors in the 1960s. This paper explores the root causes of humidity dependence in oxide semiconductor gas sensors and presents strategies to address this challenge. Mitigation strategies include functionalizing the gas-sensing material with noble metal/transition metal oxides and rare-earth/rare-earth oxides, as well as implementing a moisture barrier layer to prevent moisture diffusion into the gas-sensing film. Developing oxide semiconductor gas sensors immune to humidity dependence is expected to yield substantial socioeconomic benefits by enabling medical diagnosis, food quality assessment, environmental monitoring, and sensor network establishment.

Humidity-Sensitive Properties of Polyelectrolytes Containing Alkoxysilane Crosslinkers

  • Gong, Myoung-Seon;Lee, Chil-Won;Park, Hyung-Seok
    • Macromolecular Research
    • /
    • v.12 no.3
    • /
    • pp.311-315
    • /
    • 2004
  • We have prepared new polyelectrolytes containing trialkoxysilyl groups by copolymerizing 3-(trimethoxysilyl)propyl methacrylate (TSPM) with either [2-(methacryloyloxy)ethyl]trimethyl ammonium chloride (METAC), [2-(methacryloyloxy)ethyl]dimethyl propyl ammonium bromide (MEDPAB), or [2-(acryloyloxy)ethyl]trimethyl ammonium chloride (AETAC). The copolymers TSPM/METAC, TSPM/MEDPAB, and TSPM/METAC having compositions of 15/85, 10/90, and 5/95, respectively, were self-crosslinkable polyelectrolytes that possess humidity-sensitive properties. We measured the impedances of the copolymers at various relative humidities (RHs) and found that the resistance was dependent on the content of METAC, MEDPAB, or AETAC. The impedance changed from 10$\^$7/ $\Omega$ at 20% RH to 10$^3$ $\Omega$ at 95% RH, which is quite a suitable range for a humidity sensor that is to be utilized at ambient humidity. We also performed tests of the materials temperature dependence, hysteresis, response time, and water durability.

Hygroscopic Characteristics of $TiO_{2-x}$ Thin Film Humidity Sensors by RF Magnetron Sputtering (고주파 마그네트론 스퍼터링에 의한 $TiO_{2-x}$ 박막 습도센서의 습도감지특성)

  • Lee, Sung-Pil;Yoon, Yeu-Kyung
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.83-89
    • /
    • 1998
  • $TiO_{2-x}$ thin film humidity sensors have been fabricated by sputtering method and their physical and hygroscopic characteristics have been investigated. The sputtering conditions and sintering conditions affect the sensor's sensitivity toward humidity. AES and SEM micrographs were taken for the analysis of crystal structures, surface morphology caused by adsorbed water vapour. $TiO_{2-x}$ humidity sensors showed negative impedance-humidity characteristics and the sensor which was fabricated by experimental condition 2(rf power of 200W) showed higher sensitivity and linearity than others. Then the slope of the sensor was about $0.794\;K{\Omega}/%RH$ and the response time of $TiO_{2-x}$ humidity sensors was about 2 min. for adsorption and about 3 min. for desorption at the operating temperature of $30^{\circ}C$.

  • PDF

Humidity Sensitive Properties of Humidity Sensor Using Reactive Copolymers (반응성 공중합체들을 이용한 습도센서의 감습 특성)

  • Kim, Jin-Seok;Bae, Jang-Sun;Gong, Myeong-Seon
    • Korean Journal of Materials Research
    • /
    • v.11 no.2
    • /
    • pp.126-131
    • /
    • 2001
  • The mutually reactive copolymers poly[(vinylbenzyl chloride)-co-(n-butyl acrylate)-co-(2-hydroxyethyl methacrylate)] and poly[(4-vinylpyridine)-co-(n-butyl acrylate)-co-(2-hydroxyethyl methacrylate)] were synthesized for the humidity sensitive material by forming simultaneous quaternization. The humidity sensor showed an average resistance of 8.6 M$\Omega$, 310 k$\Omega$ and 12 k$\Omega$ at 30%RH, 60%RH and 90%RH, respectively. The hysteresis and temperature coefficient were $\pm$3%RH and -0.37~-0.40%RH/$^{\circ}C$. The introduction of n-BA and HEMA increased the resistance of the humidity sensor however it enhanced the adherence to the alumina substrate. The response time was 54 seconds changing from 33%RH to 85%RH and the difference of resistance was +0.2%RH after soaking in water for 2 hr.

  • PDF