• Title/Summary/Keyword: Humanoid Walking

Search Result 105, Processing Time 0.023 seconds

A Study of Stable Walking Analysis for Humanoid Robot (휴머노이드 로봇의 안정 보행 동작 해석에 관한 연구)

  • Sung, Yu-Kyoung;Kong, Jung-Shik;Lee, Bo-Hee;Kim, Jin-Geol;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.404-407
    • /
    • 2003
  • In this paper, we have designed the humanoid robot's leg parts with 12 D.O.F. This robot uses ankle's joints to confirm stability of walking performance. It is less movable to use ankle's joints than to do upper body's balancing joints like IWR-III, which needs three parts of via points, support leg, swing leg and balancing joints. Instead, the proposed humanoid robot needs support leg and swing leg via points. ZMP(Zero Moment Point) is utilized to guarantee the stability of robot's walking. The humanoid robot uses the ankle's joints to compensate for IWR-III's balancing joints movement. Actually we concern about a motor performance when making a real humanoid robot. So a simulator is employed to know each joint torque of humanoid robot. This simulator needs D-H(Denavit-Hartenberg) parameters, robot's mass property and two parts of via points. The simulation results are robot's walking trajectories and each motor torque. Using the walking trajectories, we can see the robot's walking scene with 3D simulator. Before we develop the humanoid robot, simulation of the humanoid robot's walking performance is very helpful. And the torque data will be used to make humanoid's joint module.

  • PDF

Analysis of Stable Walking Pattern of Biped Humanoid Robot: Fuzzy Modeling Approach (이족 휴머노이드 로봇의 안정적인 보행패턴 분석: 퍼지 모델링 접근방법)

  • Kim Dongwon;Park Gwi-Tae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.6
    • /
    • pp.376-382
    • /
    • 2005
  • In this paper, practical biped humanoid robot is presented, designed, and modeled by fuzzy system. The humanoid robot is a popular research area in robotics because of the high adaptability of a walking robot in an unstructured environment. But owing to the lots of circumstances which have to be taken into account it is difficult to generate stable and natural walking motion in various environments. As a significant criterion for the stability of the walk, ZMP (zero moment point) has been used. If the ZMP during walking can be measured, it is possible for a biped humanoid robot to realize stable walking by a control method that makes use of the measured ZMP. In this study, measuring the ZMP trajectories in real time situations throughout the whole walking phase on the flat floor and slope are conducted. And the obtained ZMP data are modeled by fuzzy system to explain empirical laws of the humanoid robot. By the simulation results, the fuzzy system can be effectively used to model practical humanoid robot and the acquired trajectories will be applied to the humanoid robot for the human-like walking motions.

Intelligent Walking Modeling of Humanoid Robot Using Learning Based Neuro-Fuzzy System (학습기반 뉴로-퍼지 시스템을 이용한 휴머노이드 로봇의 지능보행 모델링)

  • Park, Gwi-Tae;Kim, Dong-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.4
    • /
    • pp.358-364
    • /
    • 2007
  • Intelligent walking modeling of humanoid robot using learning based neuro-fuzzy system is presented in this paper. Walking pattern, trajectory of the zero moment point (ZMP) in a humanoid robot is used as an important criterion for the balance of the walking robots but its complex dynamics makes robot control difficult. In addition, it is difficult to generate stable and natural walking motion for a robot. To handle these difficulties and explain empirical laws of the humanoid robot, we are modeling practical humanoid robot using neuro-fuzzy system based on the two types of natural motions which are walking trajectories on a t1at floor and on an ascent. Learning based neuro-fuzzy system employed has good learning capability and computational performance. The results from neuro-fuzzy system are compared with previous approach.

Experimental Study on Modifiable Walking Pattern Generation for Handling Infeasible Navigational Commands

  • Hong, Young-Dae;Lee, Bumjoo
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2368-2375
    • /
    • 2015
  • To accommodate various navigational commands, a humanoid should be able to change its walking motion in real time. Using the modifiable walking pattern generation (MWPG) algorithm, a humanoid can handle dynamic walking commands by changing its walking period, step length, and direction independently. If the humanoid is given a command to perform an infeasible movement, the algorithm substitutes the infeasible command with a feasible one using binary search. The feasible navigational command is subsequently translated into the desired center-of-mass (CM) state. Every sample time CM reference is generated using a zero-moment-point (ZMP) variation scheme. Based on this algorithm, various complex walking patterns can be generated, including backward and sideways walking, without detailed consideration of the feasibility of the navigational commands. In a previous study, the effectiveness of the MWPG algorithm was verified by dynamic simulation. This paper presents experimental results obtained using the small-sized humanoid robot platform DARwIn-OP.

Stable Walking of a Humanoid Robot under Soft Terrains (부드러운 지면에서의 휴머노이드 로봇의 안정보행)

  • Yoo, Young-Kuk;Kim, Jin-Geol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.4
    • /
    • pp.72-81
    • /
    • 2009
  • The purpose of this paper is to accomplish the stable humanoid robot walking on the soft terrains. The goal of the humanoid robot development is to make the robotic system perform some tasks in human living environment. However, human dwelling environments are very different from those of laboratories, where varied experiments are performed by the robot. In many cases, the ground is soft or elastic unlike the floor of a laboratory. When a robot walks on the soft ground, the sole of robot contacts the uneven ground. This results in unstable walking or walking may be impossible according to the degree of softness. Therefore, the algorithm that facilitates stable walking on the soft ground surface is required. In this paper, we suggest an algorithm that controls the ankle to help the robot walk stably on the soft ground using the humanoid robot (ISHURO-II) as a real model. A humanoid robot walking on the soft ground was simulated to verify that the proposed algorithm results in stable walking.

Time-Delay Control for the Implementation of the Optimal Walking Trajectory of Humanoid Robot

  • Ahn, Doo Sung
    • Journal of Drive and Control
    • /
    • v.15 no.3
    • /
    • pp.1-7
    • /
    • 2018
  • Humanoid robots have fascinated many researchers since they appeared decades ago. For the requirement of both accurate tracking control and the safety of physical human-robot interaction, torque control is basically desirable for humanoid robots. Humanoid robots are highly nonlinear, coupled, complex systems, accordingly the calculation of robot model is difficult and even impossible if precise model of the humanoid robots are unknown. Therefore, it is difficult to control using traditional model-based techniques. To realize model-free torque control, time-delay control (TDC) for humanoid robot was proposed with time-delay estimation technique. Using optimal walking trajectory obtained by particle swarm optimization, TDC with proposed scheme is implemented on whole body of a humanoid, not on biped legs even though it is performed by a virtual humanoid robot. The simulation results show the validity of the proposed TDC for humanoid robots.

Optimal Trajectory Modeling of Humanoid Robot for Argentina Tango Walking

  • Ahn, Doo-Sung
    • Journal of Power System Engineering
    • /
    • v.21 no.5
    • /
    • pp.41-47
    • /
    • 2017
  • To implement Argentina tango dancer-like walking of the humanoid robot, a new trajectory generation scheme based on particle swarm optimization of the blending polynomial is presented. Firstly, the characteristics of Argentina tango walking are derived from observation of tango dance. Secondly, these are reflected in walking pose conditions and cost functions of particle swarm optimization to determine the coefficients of blending polynomial. For the stability of biped walking, zero moment point and reference trajectory of swing foot are also included in cost function. Thirdly, after tango walking cycle is divided into 3 stages with 2 postures, optimal trajectories of ankles, knees and hip of lower body, which include 6 sagittal and 4 coronal angles, are derived in consequence of optimization. Finally, the feasibility of the proposed scheme is validated by simulating biped walking of humanoid robot with derived trajectories under the 3D Simscape environment.

A Combined CPG and GA Based Adaptive Humanoid Walking for Rolling Terrains (굴곡진 지형에 대한 CPG 및 GA 결합 기반 적응적인 휴머노이드 보행 기법)

  • Kyeong, Deokhwan;Seo, Kisung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.5
    • /
    • pp.663-668
    • /
    • 2018
  • A combined CPG (Central Pattern Generator) based foot trajectory and GA (Genetic Algorithm) based joint compensation method is presented for adaptive humanoid walking. In order to increase an adaptability of humanoid walking for rough terrains, the experiment for rolling terrains are introduced. The CPG based foot trajectory method has been successfully applied to basic slops and variable slops, but has a limitation for the rolling terrains. The experiments are conducted in an ODE based Webots simulation environment using humanoid robot Nao to verify a stability of walking for various rolling terrains. The proposed method is compared to the previous CPG foot trajectory technique and shows better performance especially for the cascade rolling terrains.

Use of Support Vector Regression in Stable Trajectory Generation for Walking Humanoid Robots

  • Kim, Dong-Won;Seo, Sam-Jun;De Silva, Clarence W.;Park, Gwi-Tae
    • ETRI Journal
    • /
    • v.31 no.5
    • /
    • pp.565-575
    • /
    • 2009
  • This paper concerns the use of support vector regression (SVR), which is based on the kernel method for learning from examples, in identification of walking robots. To handle complex dynamics in humanoid robot and realize stable walking, this paper develops and implements two types of reference natural motions for a humanoid, namely, walking trajectories on a flat floor and on an ascending slope. Next, SVR is applied to model stable walking motions by considering these actual motions. Three kinds of kernels, namely, linear, polynomial, and radial basis function (RBF), are considered, and the results from these kernels are compared and evaluated. The results show that the SVR approach works well, and SVR with the RBF kernel function provides the best performance. Plus, it can be effectively applied to model and control a practical biped walking robot.

Biped Walking of a Humanoid Robot for Argentina Tango

  • Ahn, Doo-Sung
    • Journal of Drive and Control
    • /
    • v.13 no.4
    • /
    • pp.52-58
    • /
    • 2016
  • The mechanical design for biped walking of a humanoid robot doing the Argentina Tango is presented in this paper. Biped walking has long been studied in the area of robotic locomotion. The aim of this paper is to implement an Argentina Tango dancer-like walking motion with a humanoid robot by using a trajectory generation scheme. To that end, this paper uses blending polynominals whose parameters are determined based on PSO (Particle Swarm Optimization) according to conditions that make the most of the Argentina Tango's characteristics. For the stability of biped walking, the ZMP (Zero Moment Point) control method is used. The feasibility of the proposed scheme is evaluated by simulating biped walking with the 3D Simscape robot model. The simulation results show the validity and effectiveness of the proposed method.