• 제목/요약/키워드: Humanized Antibodies

검색결과 10건 처리시간 0.018초

Construction and Characterization of an Anti-Hepatitis B Virus preS1 Humanized Antibody that Binds to the Essential Receptor Binding Site

  • Wi, Jimin;Jeong, Mun Sik;Hong, Hyo Jeong
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권7호
    • /
    • pp.1336-1344
    • /
    • 2017
  • Hepatitis B virus (HBV) is a major cause of liver cirrhosis and hepatocellular carcinoma. With recent identification of HBV receptor, inhibition of virus entry has become a promising concept in the development of new antiviral drugs. To date, 10 HBV genotypes (A-J) have been defined. We previously generated two murine anti-preS1 monoclonal antibodies (mAbs), KR359 and KR127, that recognize amino acids (aa) 19-26 and 37-45, respectively, in the receptor binding site (aa 13-58, genotype C). Each mAb exhibited virus neutralizing activity in vitro, and a humanized version of KR127 effectively neutralized HBV infection in chimpanzees. In the present study, we constructed a humanized version (HzKR359-1) of KR359 whose antigen binding activity is 4.4-fold higher than that of KR359, as assessed by competitive ELISA, and produced recombinant preS1 antigens (aa 1-60) of different genotypes to investigate the binding capacities of HzKR359-1 and a humanized version (HzKR127-3.2) of KR127 to the 10 HBV genotypes. The results indicate that HzKR359-1 can bind to five genotypes (A, B, C, H, and J), and HzKR127-3.2 can also bind to five genotypes (A, C, D, G, and I). The combination of these two antibodies can bind to eight genotypes (A-D, G-J), and to genotype C additively. Considering that genotypes A-D are common, whereas genotypes E and F are occasionally represented in small patient population, the combination of these two antibodies might block the entry of most virus genotypes and thus broadly neutralize HBV infection.

Affinity Maturation of an Anti-Hepatitis B Virus PreS1 Humanized Antibody by Phage Display

  • Yang, Gi-Hyeok;Yoon, Sun-Ok;Jang, Myung-Hee;Hong, Hyo-Jeong
    • Journal of Microbiology
    • /
    • 제45권6호
    • /
    • pp.528-533
    • /
    • 2007
  • In a previous study we generated an anti-Hepatitis B Virus (HBV) preS1 humanized antibody (HzKR127) that showed in vivo HBV-neutralizing activity in chimpanzees. However, the antigen-binding affinity of the humanized antibody may not be sufficient for clinical use and thus affinity maturation is required for better therapeutic efficacy. In this study, phage display technique was employed to increase the affinity of HzKR127. All six amino acid residues (Glu95-Tyr96-Asp97-Glu98-Ala99-Tyr100) in the heavy (H) chain complementary-determining region 3 (HCDR3) of HzKR127 were randomized and phage-displayed single chain Fv (scFv) library was constructed. After three rounds of panning, 12 different clones exhibiting higher antigen-binding activity than the wild type ScFv were selected and their antigen-binding specificity for the preS1 confirmed. Subsequently, five ScFv clones were converted to whole IgG and subjected to affinity determination. The results showed that two clones (B3 and A19) exhibited an approximately 6 fold higher affinities than that of HzKR127. The affinity-matured humanized antibodies may be useful in anti-HBV immunotherapy.

Antibody Engineering for the Development of Therapeutic Antibodies

  • Kim, Sang Jick;Park, Youngwoo;Hong, Hyo Jeong
    • Molecules and Cells
    • /
    • 제20권1호
    • /
    • pp.17-29
    • /
    • 2005
  • Therapeutic antibodies represent one of the fastest growing areas of the pharmaceutical industry. There are currently 19 monoclonal antibodies in the market that have been approved by the FDA and over 150 in clinical developments. Driven by innovation and technological developments, therapeutic antibodies are the second largest biopharmaceutical product category after vaccines. Antibodies have been engineered by a variety of methods to suit a particular therapeutic use. This review describes the structural and functional characteristics of antibody and the antibody engineering for the generation and optimization of therapeutic antibodies.

인간 단클론 항체 생산용 Humanized Xenomouse 제작의 기초 소재인 생쥐 Ig 중사슬 및 경사슬 Genomic DNA 클론의 확보 및 유전자 적중 벡터의 제작 (Isolation of Mouse Ig Heavy and Light Chain Genomic DNA Clones, and Construction of Gene Knockout Vector for the Generation of Humanized Xenomouse)

  • 이희경;차상훈
    • IMMUNE NETWORK
    • /
    • 제2권4호
    • /
    • pp.233-241
    • /
    • 2002
  • Background: Monoclonal antibodies (mAb) of rodent origin are produced with ease by hybridoma fusion technique, and have been successfully used as therapeutic reagents for humans after humanization by genetic engineering. However, utilization of these antibodies for therapeutic purpose has been limited by the fact that they act as immunogens in human body causing undesired side effects. So far, there have been several attempts to produce human mAbs for effective in vivo diagnostic or therapeutic reagents including the use of humanized xenomouse that is generated by mating knockout mice which lost Ig heavy and light chain genes by homologous recombination and transgenic mice having both human Ig heavy and light gene loci in their genome. Methods: Genomic DNA fragments of mouse Ig heavy and light chain were obtained from a mouse brain ${\lambda}$ genomic library by PCR screening and cloned into a targeting vector with ultimate goal of generating Ig knockout mouse. Results: Through PCR screening of the genomic library, three heavy chain and three light chain Ig gene fragments were identified, and restriction map of one of the heavy chain gene fragments was determined. Then heavy chain Ig gene fragments were subcloned into a targeting vector. The resulting construct was introduced into embryonic stem cells. Antibiotic selection of transfected cells is under the progress. Conclusion: Generation of xenomouse is particularly important in medical biotechnology. However, this goal is not easily achieved due to the technical difficulties as well as huge financial expenses. Although we are in the early stage of a long-term project, our results, at least, partially contribute the successful generation of humanized xenomouse in Korea.

Characterization of Humanized Antibody Produced by Apoptosis-Resistant CHO Cells under Sodium Butyrate-Induced Condition

  • Kim, No-Soo;Chang, Kern-Hee;Chung, Bo-Sup;Kim, Sung-Hyun;Kim, Jung-Hoe;Lee, Gyun-min
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권6호
    • /
    • pp.926-936
    • /
    • 2003
  • Overexpression of human Bcl-2 protein in recombinant Chinese hamster ovary (rCHO) cells producing humanized antibody (SH2-0.32) considerably suppressed sodium butyrate (NaBu)-induced apoptosis during batch culture by using commercially available serum-free medium, which extended the culture longevity. Due to the extended culture longevity provided by the anti-apoptotic effect of Bcl-2 overexpression, the final antibody concentration of 14C6-bcl-2 culture (Bcl-2 high producer, $23\;\mu\textrm{g}\;ml^{-1}$) was 2 times higher than that of the $SH2-0.32-{\Delta}bcl-2$ culture (cells transfected with bcl-2-deficient plasmid, $10.5\;\mu\textrm{g}\;ml^{-1}$) in the presence of NaBu. To determine the effect of NaBu/Bcl-2 overexpression on the molecular integrity of protein products, antibodies purified from 14C6-bcl-2 and $SH2-0.32-{\Delta}bcl-2$ cultures in the presence of NaBu were characterized by using various molecular assay systems. For comparison, antibody purified from the parental rCHO cell culture (SH2-0.32) in the absence of NaBu was also characterized. No significant changes in molecular weight of antibodies could be observed by SDS-PAGE. From GlycoSep-N column analysis, it was found that the core oligosaccharide structure ($GlcNAc_2Man_3GlcNAc_2$) was not affected by NaBu/Bcl-2 overexpression, while the microheterogeneity of N-linked oligosaccharide structure was slightly affected. Compared with the antibody produced in the absence of NaBu, the proportion of neutral oligosaccharides was increased from 10% (14C6-bcl-2) to 16% ($SH2-0.32-{\Delta}bcl-2$) in the presence of NaBu, which was accompanied by the reduced proportion of acidic oligosaccharides, especially of monosialylated and disialylated forms. The changes in microheterogeneous oligoformal structures of antibody in turn affected the mobility of antibody isoforms in isoelectric focusing (IEF), resulting in the occurrence of some more basic antibody isoforms produced in the presence of NaBu. However, the antigen-antibody binding properties were not changed by alteration of glycosylation pattern. The competitive enzyme-linked immunosorbent assay (ELISA) showed that the antibody produced by NaBu/Bcl-2 overexpression maintained its antigen-antibody binding properties with binding affinity of about $2.5{\times}10^9{\;}M^{-1}$. Taken together, no significant effects of NaBu/Bcl-2 overexpression on the molecular integrity of antibodies, produced by using serum-free medium, could be observed by the molecular assay systems.

Guided Selection of Human Antibody Light Chains against TAG-72 Using a Phage Display Chain Shuffling Approach

  • Kim, Sang-Jick;Hong, Hyo-Jeong
    • Journal of Microbiology
    • /
    • 제45권6호
    • /
    • pp.572-577
    • /
    • 2007
  • To enhance therapeutic potential of murine monoclonal antibody, humanization by CDR grafting is usually used to reduce immunogenic mouse residues. Most humanized antibodies still have mouse residues critical for antigen binding, but the mouse residues may evoke immune responses in humans. Previously, we constructed a new humanized version (AKA) of mouse CC49 antibody specific for tumor-associated glycoprotein, TAG-72. In this study, to select a completely human antibody light chain against TAG-72, guided selection strategy using phage display was used. The heavy chain variable region (VH) of AKA was used to guide the selection of a human TAG-72-specific light chain variable region (VL) from a human VL repertoire constructed from human PBL. Most of the selected VLs were identified to be originated from the members of the human germline VK1 family, whereas the VL of AKA is more homologous to the VK4 family. Competition binding assay of the selected Fabs with mouse CC49 suggested that the epitopes of the Fabs overlap with that of CC49. In addition, they showed better antigen-binding affinity compared to parental AKA. The selected human VLs may be used to guide the selection of human VHs to get completely human anti-TAG72 antibody.

Gemtuzumab ozogamicin과 항체공학 (Gemtuzumab ozogamicin and Antibody Engineering)

  • 김은영
    • 한국임상약학회지
    • /
    • 제19권2호
    • /
    • pp.89-95
    • /
    • 2009
  • Gemtuzumab ozogamicin (GO) is an antibody-targeted chemotherapeutic agent consisting of calicheamicin, a potent cytotoxic antibiotic linked to a recombinant humanized anti CD33 monoclonal antibody directed against the CD33 antigen present on leukemic myeloblasts in most patients with acute myeloid leukemia (AML). GO is indicated for the treatment of patients with CD33 positive AML in first relapse who are 60 years of age or older and who are not considered candidates for cytotoxic chemotherapy. GO has shown moderate activity as a single agent in patients with CD33-positive refractory or relapsed acute myeloid leukaemia, with more promising results in acute promyelocytic leukaemia. The side effect profile may be an improvement on conventional chemotherapy, except for a higher frequency of veno-occlusive disease or sinusoidal obstructive syndrome, especially after a subsequent haematopoietic stem cell transplantation. Because of the different mechanisms of action and non-overlapping toxicities, the integration of this immunoconjugate with standard chemotherapy is a rational approach.

  • PDF

Recurrent hemolytic uremic syndrome caused by DGKE gene mutation: a case report

  • Shin, Baek Sup;Ahn, Yo Han;Kang, Hee Gyung
    • Childhood Kidney Diseases
    • /
    • 제26권1호
    • /
    • pp.58-62
    • /
    • 2022
  • Atypical hemolytic uremic syndrome (aHUS) is a rare disease characterized by microangiopathic hemolytic anemia, thrombocytopenia, and acute kidney injury without any association with preceding diarrhea. Dysregulation of the complement system is the most common cause of aHUS, and monoclonal humanized anti-C5 antibodies are now recommended as the first-line treatment for aHUS. However, if the complement pathway is not the cause of aHUS, C5 inhibitors are ineffective. In this study, we report the second reported case of aHUS caused by DGKE mutations in Republic of Korea. The patient was an 11-month-old infant who presented with prodromal diarrhea similar to typical HUS, self-remitted with conservative management unlike complement-mediated aHUS but recurred with fever. While infantile aHUS often implies genetic dysregulation of the complement system, other rare genetic causes, such as DGKE mutation, need to be considered before deciding long-term treatment with C5 inhibitors.

Development and characterization of a fully functional small anti-HER2 antibody

  • Gao, Jie;Li, Bohua;Li, Huimei;Zhang, Xunmin;Zhang, Dapeng;Zhao, Lei;Wang, Chong;Fang, Chen;Qian, Weizhu;Hou, Sheng;Kou, Geng;Wei, Huafeng;Shi, Shu;Wang, Hao;Guo, Yajun
    • BMB Reports
    • /
    • 제42권10호
    • /
    • pp.636-641
    • /
    • 2009
  • The penetrating of monoclonal antibodies (mAbs) into solid tumor may be hampered by their large size. The antibody mimetics, composed of two complementarity-determining regions (CDRs) through a cognate framework region (FR), have been demonstrated to have the capacity to penetrate tumors superior to its parental intact IgG. In this study, we used CDR and FR sequences from the humanized anti-HER2 monoclonal antibody trastuzumab to design four antibody mimetics. Then these antibody mimetics were fused to human IgG Fc to generate mimetics-Fc small antibodies. One of the four mimetics-Fc antibodies binds well to HER2-overexpressing SK-BR3 cells and effectively inhibits the binding of trastuzumab. This mimetics-Fc, denoted as HMTI-Fc, was shown to be effective in mediating antibody-dependent cellular cytotoxicity and exhibit an antiproliferative effect in SK-BR3 cells. To our knowledge, the HMTI-Fc antibody shown here is the smallest fully functional antibody and may have a potential for treatment of cancer.

류마티스 관절염 환자에서 Adalimumab 사용 후 발생한 사르코이드증 1예 (Sarcoidosis Induced by Adalimumab in Rheumatoid Arthritis)

  • 이승호;김사일;송준석;김태형;손장원;김상헌;윤호주;김태환;신동호;박성수;곽현정
    • Tuberculosis and Respiratory Diseases
    • /
    • 제71권6호
    • /
    • pp.464-469
    • /
    • 2011
  • Adalimumab is a full human monoclonal antibody that inhibits tumor necrosis factor-alpha (TNF-${\alpha}$). This has recently been shown to be effective in the treatment of rheumatoid arthritis (RA), ankylosing spondylitis, and other conditions. Sacoidosis is known to be the target for adalimumab but we describe a patient who has developed sarcoidosis with lung involvement during adalimumab therapy for RA. A 48-year-old woman, who was treated with adalimumab for 5 months, was admitted because of chronic cough and both hilar lymphadenopathy on chest radiography. Chest computed tomography revealed the enlargement of multiple lymph nodes in the right supraclavicular, subcarinal, both hilar and right axillary area. She was diagnosed with sarcoidosis based on the biopsy of supraclavicular lymph node, skin and lung through video-associated thoracoscopic surgery, which was non-caseating epitheloid cell granuloma and excluded from a similar disease. She was treated for sarcoidosis with prednisolone and methotrexate instead of adalimumab.