Browse > Article

Antibody Engineering for the Development of Therapeutic Antibodies  

Kim, Sang Jick (Laboratory of Antibody Engineering, Korea Research Institute of Bioscience and Biotechnology)
Park, Youngwoo (Laboratory of Antibody Engineering, Korea Research Institute of Bioscience and Biotechnology)
Hong, Hyo Jeong (Laboratory of Antibody Engineering, Korea Research Institute of Bioscience and Biotechnology)
Abstract
Therapeutic antibodies represent one of the fastest growing areas of the pharmaceutical industry. There are currently 19 monoclonal antibodies in the market that have been approved by the FDA and over 150 in clinical developments. Driven by innovation and technological developments, therapeutic antibodies are the second largest biopharmaceutical product category after vaccines. Antibodies have been engineered by a variety of methods to suit a particular therapeutic use. This review describes the structural and functional characteristics of antibody and the antibody engineering for the generation and optimization of therapeutic antibodies.
Keywords
Affinity Maturation; Antibody Engineering; Antibody Fragments; Effector Functions; Human Monoclonal Antibodies; Humanized Antibodies; Pharmacokinetics; Therapeutic Antibodies;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 44  (Related Records In Web of Science)
연도 인용수 순위
1 Barbas, III C. F., Bain, J. D., Hoekstra, D. M., and Lerner, R. A. (1992) Semisynthetic combinatorial antibody libraries: a chemical solution to the diversity problem. Proc. Natl. Acad. Sci. USA 89, 4457–4461
2 Bera, T. K., Onda, M., Brinkmann, U., and Pastan, I. (1998) A bivalent disulfide-stabilized fv with improved antigen binding to erbb2. J. Mol. Biol. 281, 475–483   DOI   ScienceOn
3 Bird, R. E., Hardman, K. D., Jacobson, J. W., Johnson, S., Kaufman, B. M., et al. (1988) Single-chain antigen-binding proteins. Science 242, 423–426   DOI
4 Colcher, D., Pavlinkova, G., Beresford, G., Booth, B. J., Choudhury, A., et al. (1998) Pharmacokinetics and biodistribution of genetically-engineered antibodies. Q. J. Nucl. Med. 42, 225–241
5 Daeron, M. (1997) Fc receptor biology. Ann. Rev. Immunol. 15, 203–234   DOI   ScienceOn
6 Dall'Acqua, W. F., Woods, R. M., Ward, E. S., Palaszynski, S. R., Patel, N. K., et al. (2002) Increasing the affinity of a human IgG1 for the neonatal Fc receptor: Biological consequences. J. Immunol. 169, 5171–5180
7 Fuchs, P., Breitling, F., Dubel, S., Seehaus, T., and Little, M. (1991) Targeting recombinant antibodies to the surface of Escherichia coli: fusion to a peptidoglycan associated lipoprotein. Bio-Technology 9, 1369–1372   ScienceOn
8 Griffiths, A. D., Williams, S. C., Hartley, O., Tomlinson, I. M., Waterhouse, P., et al. (1994) Isolation of high affinity human antibodies directly from large synthetic repertoires. EMBO J. 13, 3245–3260
9 Hawkins, R. E., Russell, S. J., and Winter, G. (1992) Selection of phage antibodies by binding affinity. Mimicking affinity maturation. J. Mol. Biol. 226, 889-896   DOI
10 Hoogenboom, H. R. and Winter, G. (1992) Bypassing immunisation. Human antibodies from synthetic repertoires of germline VH gene segments rearranged in vitro. J. Mol. Biol. 227, 381–388   DOI
11 Hoogenboom, H. R., de Bruine, A. P., Hufton, S. E., Hoet, R. M., Arends, J. W., et al. (1998) Antibody phage display technology and its applications. Immunotechnology 4, 1–20   DOI   ScienceOn
12 King, D. J., Turner, A., Farnsworth, A. P., Adair, J. R., Owens, R. J., et al. (1994) Improved tumor targeting with chemically cross-linked recombinant antibody fragments. Cancer Res. 54, 6176–6185
13 Salvatore, G., Beers, R., Margulies, I., Kreitman, R. J., and Pastan, I. (2002) Improved cytotoxic activity toward cell lines and fresh leukemia cells of a mutant anti-CD22 immunotoxin obtained by antibody phage display. Clin. Cancer Res. 8, 995–1002
14 Kuan, C. T., Wikstrand, C. J., Archer, G., Beers, R., Pastan, I., et al. (2000) Increased binding affinity enhances targeting of glioma xenografts by EGFRVIII-specific scFV. Int. J. Cancer 88, 962–969   DOI   ScienceOn
15 Neuberger, M. S., Ehrenstein, M. R., Klix, N., Jolly, C. J., Yelamos, J., et al. (1998) Monitoring and interpreting the intrinsic features of somatic hypermutation. Immunol. Rev. 162, 107–116   DOI   ScienceOn
16 Nissim, A., Hoogenboom, H. R., Tomlinson, I. M., Flynn, G., Midgley, C., et al. (1994) Antibody fragments from a 'single pot' phage display library as immunochemical reagents. EMBO J. 13, 692–698
17 Schier, R., Bye, J., Apell, G., McCall, A., Adams, G. P., et al. (1996a) Isolation of high-affinity monomeric human anti-cerbB- 2 single chain Fv using affinity-driven selection. J. Mol. Biol. 255, 28–43   DOI   ScienceOn
18 Stavenhagen, J. and Vijh, S., Int. Pub. No. WO 2004/063351 A2
19 Tsurushita, N., Hinton, P. R., and Kumar, S. (2005) Design of humanized antibodies: from anti-Tac to Zenapax. Methods 36, 69-83   DOI   ScienceOn
20 de Wildt, R. M., Finnern, R., Ouwehand, W. H., Griffiths, A. D., van Venrooij, W. J., et al. (1996) Characterization of human variable domain antibody fragments against the U1 RNAassociated A protein, selected from a synthetic and patientderived combinatorial V gene library. Eur. J. Immunol. 26, 629–639
21 Wu, A. M. (2004) Engineering multivalent antibody fragments for in vivo targeting. Methods Mol. Biol. 248, 209–225
22 Yang, W. P., Green, K., Pinz-Sweeney, S., Briones, A. T., Burton, D. R., et al. (1995) CDR Walking mutagenesis for the affinity maturation of a potent human anti-HIV-1 antibody into the picomolar range. J. Mol. Biol. 254, 392–403   DOI   ScienceOn
23 Treon, S. P., Mitsiades, C., Mitsiades, N., Young, G., Doss, D., et al. (2001) Tumor cell expression of CD59 is associated with resistance to CD20 serotherapy in patients with B-cell malignancies. J. Immunother. 24, 263–271   DOI
24 Kabat, E. A., Wu, T. T., Perry, H. M., Gottesman, K. S., and Foeller, C. (1991) Sequences of Proteins of Immunological Interests, 5th ed., United States Public Health Service, National Institutes of Health, Bethesda
25 Francisco, J. A., Campbell, R., Iverson, B. L., and Georgiou, G. (1993) Production and fluorescence-activated cell sorting of Escherichia coli expressing a functional antibody fragment on the external surface. Proc. Natl. Acad. Sci. USA 90, 10444–10448
26 Georgiou, G., Stathopoulos, C., Daugherty, P. S., Nayak, A. R., Iverson, B. L., et al. (1997) Display of heterologous proteins on the surface of microorganisms: from the screening of combinatorial libraries to live recombinant vaccines. Nat. Biotechnol. 15, 29–34   ScienceOn
27 Griffiths, A. D. and Duncan, A. R. (1998) Strategies for selection of antibodies by phage display. Curr. Opin. Biotechnol. 9, 102–108   DOI   ScienceOn
28 Holliger, P., Prospero, T., and Winter, G. (1993) 'Diabodies': Small bivalent and bispecific antibody fragments. Proc. Natl. Acad. Sci. USA 90, 6444–6448
29 Gunneriusson, E., Samuelson, P., Uhlen, M., Nygren, P. A., and Stahl, S. (1996) Surface display of a functional single-chain Fv antibody on staphylococci. J. Bacteriol. 178, 1341–1346
30 Bell, M. and Kamm, M. (2000) The clinical role of anti-TNFa antibody treatment in Crohn's disease. Aliment. Phamacol. Ther. 14, 501-514   DOI   ScienceOn
31 Mendez, M., Green, L., Corvalan, J., Jia, X. C., Maynard-Currie, C., et al. (1997) Functional transplant of megabase human immunoglobulin loci recapitulates human antibody response in mice. Nat. Genet. 15, 146–156   DOI   ScienceOn
32 Fishwild, D. M., O'Donnell, S. L., Bengoechea, T., Hudson, D. V., Harding, F., et al. (1996) High-avidity human IgG kappa monoclonal antibodies from a novel strain of minilocus transgenic mice. Nat. Biotechnol. 14, 845–851   DOI   ScienceOn
33 Lund, J., Takahashi, N., Pound, J. D., Goodall, M., and Jefferis, R. (1996) Multiple interactions of IgG with its core oligosaccharide can modulate recognition by complement and human Fcγ receptor I and influence the synthesis of its oligosaccharide chains. J. Immunol. 157, 4963–4969
34 Medzihradszky, K. F., Spencer, D. I., Sharma, S. K., Bhatia, J., Pedley, R. B., et al. (2004) Glycoforms obtained by expression in Pichia pastoris improve cancer targeting potential of a recombinant antibody-enzyme fusion protein. Glycobiology 14, 27–37   DOI   ScienceOn
35 Wright, A. and Morrison, S. L. (1998) Effect of C2-associated carbohydrate structure on Ig effector function: studies with chimeric mouse-human IgG1 antibodies in glycosylation mutants of Chinese hamster ovary cells. J. Immunol. 160, 3393– 3402
36 Dall'Acqua, W. F., Damschroder, M. M., Zhang, J., Woods, R. M., Widjaja, L., et al. (2005) Antibody humanization by framework shuffling. Methods. 36, 43-60   DOI   ScienceOn
37 Gelderman, K. A., Tomlinson, K. S., Ross, G. D., and Gorter, A. (2004) Complement function in mAb-mediated cancer immunotherapy. Trends Immunol. 25, 158–164   DOI   ScienceOn
38 Hanes, J., Jermutus, L., Weber-Bornhauser, S., Bosshard, H. R., and Pluckthun, A. (1998) Ribosome display efficiently selects and evolves high-affinity antibodies in vitro from immune libraries. Proc. Natl. Acad. Sci. USA 95, 14130–14135
39 Hinton, P. R., Johlfs, M. G., Xiong, J. M., Hanestad, K., Ong, K. C., et al. (2003) Engineered human IgG antibodies with longer serum half-lives in primates. J. Biol. Chem. 279, 6213–6216   DOI   ScienceOn
40 Shields, R. L., Lai, J., Keck, R., O'Connell, L. Y., Hong, K., et al. (2002) Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human FcΓRIII and antibodydependent cellular toxicity. J. Biol. Chem. 277, 26733–26740   DOI   ScienceOn
41 Jones, P. T., Dear, P. H., Foote, J., Neuberger, M. S., and Winter, G. (1996) Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 321, 522-525   DOI   ScienceOn
42 Maynard, J. A., Maassen, C. B., Leppla, S. H., Brasky, K., Patterson, J. L., et al. (2002) Protection against anthrax toxin by recombinant antibody fragments correlates with antigen affinity. Nat. Biotechnol. 20, 597–601   DOI   ScienceOn
43 Woodle, M. C. and Lasic, D. D. (1992) Sterically stabilized liposomes. Biochim. Biophys. Acta 1113, 171–199   ScienceOn
44 Duenas, M. and Borrebaeck, C. A. (1994) Clonal selection and amplification of phage displayed antibodies by linking antigen recognition and phage replication. Bio-Technology 12, 999–1002   ScienceOn
45 Adams, G. P., Schier, R., Marshall, K., Wolf, E. J., McCall, A. M., et al. (1998) Increased affinity leads to improved selective tumor delivery of single-chain Fv antibodies. Cancer Res. 58, 485–490
46 Mattheakis, L. C., Bhatt, R. R., and Dower, W. J. (1994) An in vitro polysome display system for identifying ligands from very large peptide libraries. Proc. Natl. Acad. Sci. USA 91, 9022–9026
47 Tao, M. H., Canfield, S. M., and Morrison, S. L. (1991) The differential ability of human IgG1 and IgG4 to activate complement is determined by the COOH-terminal sequence of the CH2 domain. J. Exp. Med. 173, 1025–1028   DOI   ScienceOn
48 Neal, Z. C., Yang, J. C., Rakhmilevich, A. L., Buhtoiarov, I. N., Lum, H. E., et al. (2004) Enhanced activity of hu14.18-IL2 immunocytokine against murine NXS2 neuroblastoma when combined with interleukin 2 therapy. Clin. Cancer Res. 10, 4839–4847   DOI   ScienceOn
49 Tsutsumi, Y., Onda, M., Nagata, S., Lee, B., Kreitman, R. J., et al. (2000) Site-specific chemical modification with polyethylene glycol of recombinant immunotoxin anti-Tac(Fv)-PE38 (LMB-2) improves antitumor activity and reduces animal toxicity and immunogenicity. Proc. Natl. Acad. Sci. USA 97, 8548–8553
50 Yang, X. D., Jia, X. C., Corvalan, J. R., Wang, P., Davis, C. G., et al. (1999b) Eradication of established tumors by a fully human monoclonal antibody to the epidermal growth factor receptor without concomitant chemotherapy. Cancer Res. 59, 1236–1243
51 Chang, C. H., Sharkey, R. M., Rossi, E. A., Karacay, H., McBride, W., et al. (2002) Molecular advances in pretargeting radioimunotherapy with bispecific antibodies. Mol. Cancer Ther. 1, 553–563
52 Idusogie, E. E., Wong, P. Y., Presta, L. G., Gazzano-Santoro, H., Totpal, K., et al. (2001) Engineered antibodies with increased activity to recruit complement. J. Immunol. 166, 2571–2575
53 Hassan, R., Lerner, M. R., Benbrook, D., Lightfoot, S. A., Brackett, D. J., et al. (2002) Antitumor activity of SS (dsFv) PE38 and SS1(dsFv)PE38, recombinant antimesothelin immunotoxins against human gynecologic cancers grown in organotypic culture in vitro. Clin. Cancer Res. 8, 3520–3526
54 Valone, F. H., Kaufman, P. A., Guyre, P. M., Lewis, L. D., Memoli, V. J., et al. (1995a) Phase Ia/Ib trial of bispecific antibody MDX-210 in patients with advanced breast or ovarian cancer that overexpresses the proto-oncogene HER-2/neu. J. Clin. Oncol. 13, 2281–2292
55 Ward, E. S., Gussow, D., Griffiths, A. D., Jones, P. T., and Winter, G. (1989) Binding activities of a repertoire of single immunoglobulin variable domains secreted from Escherichia coli. Nature 341, 544–546   DOI   ScienceOn
56 Brinkmann, U., Reiter, Y., Jung, S. H., Lee, B., and Pastan, I. (1993) A recombinant immunotoxin containing a disulfidestabilized Fv fragment Proc. Natl. Acad. Sci. USA 90, 7538– 7542
57 Hwang, W. Y. K. and Foote, J. (2005) Immunogenicity of engineered antibodies. Methods 36, 3-10   DOI   ScienceOn
58 Wu, H., Beuerlein, G., Nie, Y., Smith, H., Lee, B. A., et al. (1998) Stepwise in vitro affinity maturation of Vitaxin, an $\alpha$(v)$\beta$3-specific humanized mAb. Proc. Natl. Acad. Sci. USA 95, 6037–6042
59 Barbas, III C. F., Hu, D., Dunlop, N., Sawyer, L., Cababa, D., et al. (1994) In vitro evolution of a neutralizing human antibody to human immunodeficiency virus type 1 to enhance affinity and broaden strain cross-reactivity. Proc. Natl. Acad. Sci. USA 91, 3809–3813
60 Boder, E. T. and Wittrup, K. D. (1997) Yeast surface display for screening combinatorial polypeptide libraries. Nat. Biotechnol. 15, 553–557   DOI   ScienceOn
61 Kuby, J. (1997) Immunology. New York: Freeman. p. 664
62 Hanes, J. and Pluckthun, A. (1999) In vitro selection methods for screening of peptide and protein libraries. Curr. Top. Microbiol. Immunol. 243, 107–122
63 Schier, R., McCall, A., Adams, G. P., Marshall, K. W., Merritt, H., et al. (1996b) Isolation of picomolar affinity anti-c-erbB- 2 single-chain Fv by molecular evolution of the complementarity determining regions in the center of the antibody binding site. J. Mol. Biol. 263, 551–567   DOI   ScienceOn
64 Spada, S., Krebber, C., and Pluckthun, A. (1997) Selectively infective phages (SIP). Biol. Chem. 378, 445–456   ScienceOn
65 Huls, G. A., Heijnen, I. A., Cuomo, M. E., Koningsberger, J. C., Wiegman, L., et al. (1999) A recombinant, fully human monoclonal antibody with antitumor activity constructed from phage-displayed antibody fragments. Nat. Biotechnol. 17, 276–281   DOI   ScienceOn
66 Idusogie, E. E., Presta, L. G., Gazzano-Santoro, H., Totpal, K., Wong, P. Y., et al. (2000) Mapping of the C1q binding site on rituxan, a chimeric antibody with a human IgG1 Fc. J. Immunol. 164, 4178–4184
67 Chowdhury, P. S. (2003) Engineering hot spots for affinity enhancement of antibodies. Methods Mol. Biol. 2007, 179–196
68 Chowdhury, P. S. and Pastan, I. (1999) Improving antibody affinity by mimicking somatic hypermutation in vitro. Nat. Biotechnol. 17, 568–572   DOI   ScienceOn
69 Hwang, W. Y. K., Almagro, J. C., Buss, T. N., Tan, P., and Foote, J. (2005) Use of human germline genes in a CDR homologybased approach to antibody humanization. Methods 36, 35-42   DOI   ScienceOn
70 Chapman, A. P. (2002) PEGylated antibodies and antibody fragments for improved therapy: a review. Adv. Drug Deliv. Rev. 54, 531–545   DOI   ScienceOn
71 Kashmiri, S. V., De Pascalis, R., Gonzales, N. R., and Schlom, J. (2005) SDR grafting--a new approach to antibody humanization. Methods. 36, 25-34   DOI   ScienceOn
72 Lazar, G., Chirino, A. J., Dang, W., Desjarlais, J. R., Doberstein, S. K., et al. Int. Pub. No. WO 2004/029207 A2
73 Roberts, R. and Szostak, J. W. (1997) RNApeptide fusions for the in vitro selection of peptides and proteins. Proc. Natl. Acad. Sci. USA 94, 12297–12302
74 Smallshaw, J. E., Ghetie, V., Rizo, J., Fulmer, J. R., Trahan, L. L., et al. (2003) Genetic engineering of an immunotoxin to eliminate pulmonary vascular leak in mice. Nat. Biotechnol. 21, 387–389   DOI   ScienceOn
75 Wu, H., Nie, Y., Huse, W. D., and Watkins, J. D. (1999) Humanization of a murine monoclonal antibody by simultaneous optimization of framework and CDR residues. J. Mol. Biol. 294, 151–162   DOI   ScienceOn
76 Bruggemann, M. and Taussig, M. J. (1997) Production of human antibody repertoires in transgenic mice. Curr. Opin. Biotechnol. 8, 455–458   DOI   ScienceOn
77 Glaser, S. M., Yelton, D. E., and Huse, W. D. (1992) Antibody engineering by codon-based mutagenesis in a filamentous phage vector system. J. Immunol. 149, 3903–3913
78 de Kruif, J., Boel, E., and Logtenberg, T. (1995) Selection and application of human single chain Fv antibody fragments from a semi-synthetic phage antibody display library with designed CDR3 regions. J. Mol. Biol. 248, 97–105   DOI   ScienceOn
79 Shields, R. L., Namenuk, A. K., Hong, K., Meng, Y. G., Rae, J., et al. (2001) High resolution mapping of the binding site on human IgG1 for $Fc{\gamma}RI,\;Fc{\gamma}RII,\;Fc{\gamma}RIII$, and FcRn and design of IgG1 variants with improved binding to the $Fc{\gamma}$R. J. Biol. Chem. 276, 6591–6604   DOI   ScienceOn
80 He, M. and Taussig, M. J. (1997) Antibodyribosome-mRNA (ARM) complexes as efficient selection particles for in vitro display and evolution of antibody combining sites. Nucleic Acids Res. 25, 5132–5134   DOI
81 Vaughan, T. J., Williams, A. J., Pritchard, K., Osbourn, J. K., Pope, A. R., et al. (1996) Human antibodies with subnanomolar affinities isolated from a large non-immunized phage display library. Nat. Biotechnol. 14, 309–314   DOI   ScienceOn
82 Hu, S., Shively, L., Raubitschek, A., Sherman, M., Williams, L. E., et al. (1996) Minibody: A novel engineered anticarcinoembryonic antigen antibody fragment (single-chain Fv-C(H)3) which exhibits rapid, high-level targeting of xenografts. Cancer Res. 56, 3055–3061
83 Morrison, S. L., Johnson, M. J., Herzenberg, L. A., and Oi, V. T. (1984) Chimeric human antibody molecules; mouse antigenbinding domains with human constant region domains. Proc. Natl Acad. Sci. USA 21, 6851-6855
84 Sensel, M. G., Kane, L. M., and Morrison, S. L. (1977) Amino acid differences in the N-terminus of CH2 influence the relative abilities of IgG2 and IgG3 to active complement. Mol. Immunol. 34, 1019–1029
85 Wabl, M., Cascalho, M., and Steinberg, C. (1999) Hypermutation in antibody affinity maturation. Curr. Opin. Immunol. 11, 186–189   DOI   ScienceOn
86 Marks, J. D., Hoogenboom, H. R., Bonnert, T. P., McCafferty, J., Griffiths, A. D., et al. (1991) Bypassing immunization. Human antibodies from V-gene libraries displayed on phage. J. Mol. Biol. 222, 581–597   DOI
87 Zhang, M. Y., Shu, Y., Rudolph, D., Prabakaran, P., Labrijn, A. F., et al. (2004) Improved breadth and potency of an HIV-1- neutralizing human single-chain antibody by random mutagenesis and sequential antigen panning. J. Mol. Biol. 335, 209– 219   DOI   ScienceOn
88 Tao, M. H., Smith, R. I., and Morrison, S. L. (1993) Structural features of human immunoglobulin G that determine isotypespecific differences in complement activation. J. Exp. Med. 178, 661–667   DOI   ScienceOn
89 Yang, X. D., Corvalan, J. R., Wang, P., Roy, C. M., and Davis, C. G. (1999a) Fully human antiinterleukin-8 monoclonal antibodies: potential therapeutics for the treatment of inflammatory disease states. J. Leukocyte Biol. 66, 401–410
90 Chapman, A. P., Antoniw, P., Spitali, M., West, S., Stephens, S., et al. (1999) Therapeutic antibody fragments with prolonged in vivo half-lives. Nat. Biotechnol. 17, 780–783   DOI   ScienceOn
91 Wu, A. M. and Yazaki, P. J. (2000) Designer genes: recombinant antibody fragments for biological imaging. Q. J. Nucl. Med. 44, 268–283
92 Klein, M., Haeffner-Cavaillon, N., Isenman, D. E., Rivat, C., Navia, M. A., et al. (1981) Expression of biological effector functions by immunoglobulin G molecules lacking the hinge region. Proc. Natl. Acad. Sci. USA 78, 524–528
93 Knappik, A., Ge, L., Honegger, A., Pack, P., Fischer, M., et al. (2000) Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs with randomized trinucleotides. J. Mol. Biol. 296, 57– 86   DOI   ScienceOn
94 Golay, J., Zaffaroni, L., Vaccari, T., Lazzari, M., Borleri, G. M., et al. (2000) Biologic response of B lymphoma cells to anti- CD20 monoclonal antibody rituximab in vitro: CD55 and CD59 regulate complement-mediated cell lysis Blood 95, 3900–3908
95 Valone, F. H., Kaufman, P. A., Guyre, P. M., Lewis, L. D., Memoli, V. J., et al. (1995b) Clinical trials of bispecific antibody MDX-210 in women with advanced breast or ovarian cancer that overexpresses HER-2/neu. J. Hematother. 4, 471– 475   ScienceOn
96 Chames, P., Willemsen, R. A., Rojas, G., Dieckmann, D., Rem, L., et al. (2002) TCR-like human antibodies expressed on human CTLs mediate antibody affinity-dependent cytolytic activity. J. Immunol. 169, 1110–1118
97 Hanes, J., Schaffitzel, C., Knappik, A., and Plückthun, A. (2000) Picomolar affinity antibodies from a fully synthetic naive library selected and evolved by ribosome display. Nat. Biotechnol. 18, 1287-1292   DOI   ScienceOn
98 Ho, M., Kreitman, R. J., Onda, M., and Pastan, I. (2005) In vitro antibody evolution targeting germline hot spots to increase activity of an anti-CD22 immunotoxin. J. Biol. Chem. 280, 607–617
99 Santimaria, M., Moscatelli, G., Viale, G. L., Giovannoni, L., Neri, G., et al. (2003) Immunoscintigraphic detection of the ED-B domain of fibronectin, a marker of angiogenesis, in patients with cancer. Clin. Cancer Res. 9, 571–579
100 Shinkawa, T., Nakamura, K., Yamane, N., Shoji-Hosaka, E., Kanda, Y., et al. (2003) The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J. Biol. Chem. 278, 3466–3473   DOI   ScienceOn