• Title/Summary/Keyword: Human-object Interaction Detection

Search Result 26, Processing Time 0.02 seconds

Active Facial Tracking for Fatigue Detection (피로 검출을 위한 능동적 얼굴 추적)

  • 박호식;정연숙;손동주;나상동;배철수
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.603-607
    • /
    • 2004
  • The vision-based driver fatigue detection is one of the most prospective commercial applications of facial expression recognition technology. The facial feature tracking is the primary technique issue in it. Current facial tracking technology faces three challenges: (1) detection failure of some or all of features due to a variety of lighting conditions and head motions; (2) multiple and non-rigid object tracking and (3) features occlusion when the head is in oblique angles. In this paper, we propose a new active approach. First, the active IR sensor is used to robustly detect pupils under variable lighting conditions. The detected pupils are then used to predict the head motion. Furthermore, face movement is assumed to be locally smooth so that a facial feature can be tracked with a Kalman filter. The simultaneous use of the pupil constraint and the Kalman filtering greatly increases the prediction accuracy for each feature position. Feature detection is accomplished in the Gabor space with respect to the vicinity of predicted location. Local graphs consisting of identified features are extracted and used to capture the spatial relationship among detected features. Finally, a graph-based reliability propagation is proposed to tackle the occlusion problem and verify the tracking results. The experimental results show validity of our active approach to real-life facial tracking under variable lighting conditions, head orientations, and facial expressions.

  • PDF

Multi-Scale, Multi-Object and Real-Time Face Detection and Head Pose Estimation Using Deep Neural Networks (다중크기와 다중객체의 실시간 얼굴 검출과 머리 자세 추정을 위한 심층 신경망)

  • Ahn, Byungtae;Choi, Dong-Geol;Kweon, In So
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.3
    • /
    • pp.313-321
    • /
    • 2017
  • One of the most frequently performed tasks in human-robot interaction (HRI), intelligent vehicles, and security systems is face related applications such as face recognition, facial expression recognition, driver state monitoring, and gaze estimation. In these applications, accurate head pose estimation is an important issue. However, conventional methods have been lacking in accuracy, robustness or processing speed in practical use. In this paper, we propose a novel method for estimating head pose with a monocular camera. The proposed algorithm is based on a deep neural network for multi-task learning using a small grayscale image. This network jointly detects multi-view faces and estimates head pose in hard environmental conditions such as illumination change and large pose change. The proposed framework quantitatively and qualitatively outperforms the state-of-the-art method with an average head pose mean error of less than $4.5^{\circ}$ in real-time.

Development of Humanoid Robot HUMIC and Reinforcement Learning-based Robot Behavior Intelligence using Gazebo Simulator (휴머노이드 로봇 HUMIC 개발 및 Gazebo 시뮬레이터를 이용한 강화학습 기반 로봇 행동 지능 연구)

  • Kim, Young-Gi;Han, Ji-Hyeong
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.3
    • /
    • pp.260-269
    • /
    • 2021
  • To verify performance or conduct experiments using actual robots, a lot of costs are needed such as robot hardware, experimental space, and time. Therefore, a simulation environment is an essential tool in robotics research. In this paper, we develop the HUMIC simulator using ROS and Gazebo. HUMIC is a humanoid robot, which is developed by HCIR Lab., for human-robot interaction and an upper body of HUMIC is similar to humans with a head, body, waist, arms, and hands. The Gazebo is an open-source three-dimensional robot simulator that provides the ability to simulate robots accurately and efficiently along with simulated indoor and outdoor environments. We develop a GUI for users to easily simulate and manipulate the HUMIC simulator. Moreover, we open the developed HUMIC simulator and GUI for other robotics researchers to use. We test the developed HUMIC simulator for object detection and reinforcement learning-based navigation tasks successfully. As a further study, we plan to develop robot behavior intelligence based on reinforcement learning algorithms using the developed simulator, and then apply it to the real robot.

Image Filter Optimization Method based on common sub-expression elimination for Low Power Image Feature Extraction Hardware Design (저전력 영상 특징 추출 하드웨어 설계를 위한 공통 부분식 제거 기법 기반 이미지 필터 하드웨어 최적화)

  • Kim, WooSuk;Lee, Juseong;An, Ho-Myoung;Kim, Byungcheul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.2
    • /
    • pp.192-197
    • /
    • 2017
  • In this paper, image filter optimization method based on common sub-expression elimination is proposed for low-power image feature extraction hardware design. Low power and high performance object recognition hardware is essential for industrial robot which is used for factory automation. However, low area Gaussian gradient filter hardware design is required for object recognition hardware. For the hardware complexity reduction, we adopt the symmetric characteristic of the filter coefficients using the transposed form FIR filter hardware architecture. The proposed hardware architecture can be implemented without degradation of the edge detection data quality since the proposed hardware is implemented with original Gaussian gradient filtering algorithm. The expremental result shows the 50% of multiplier savings compared with previous work.

Automatic Facial Expression Recognition using Tree Structures for Human Computer Interaction (HCI를 위한 트리 구조 기반의 자동 얼굴 표정 인식)

  • Shin, Yun-Hee;Ju, Jin-Sun;Kim, Eun-Yi;Kurata, Takeshi;Jain, Anil K.;Park, Se-Hyun;Jung, Kee-Chul
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.12 no.3
    • /
    • pp.60-68
    • /
    • 2007
  • In this paper, we propose an automatic facial expressions recognition system to analyze facial expressions (happiness, disgust, surprise and neutral) using tree structures based on heuristic rules. The facial region is first obtained using skin-color model and connected-component analysis (CCs). Thereafter the origins of user's eyes are localized using neural network (NN)-based texture classifier, then the facial features using some heuristics are localized. After detection of facial features, the facial expression recognition are performed using decision tree. To assess the validity of the proposed system, we tested the proposed system using 180 facial image in the MMI, JAFFE, VAK DB. The results show that our system have the accuracy of 93%.

  • PDF

A Hand Gesture Recognition System using 3D Tracking Volume Restriction Technique (3차원 추적영역 제한 기법을 이용한 손 동작 인식 시스템)

  • Kim, Kyung-Ho;Jung, Da-Un;Lee, Seok-Han;Choi, Jong-Soo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.6
    • /
    • pp.201-211
    • /
    • 2013
  • In this paper, we propose a hand tracking and gesture recognition system. Our system employs a depth capture device to obtain 3D geometric information of user's bare hand. In particular, we build a flexible tracking volume and restrict the hand tracking area, so that we can avoid diverse problems caused by conventional object detection/tracking systems. The proposed system computes running average of the hand position, and tracking volume is actively adjusted according to the statistical information that is computed on the basis of uncertainty of the user's hand motion in the 3D space. Once the position of user's hand is obtained, then the system attempts to detect stretched fingers to recognize finger gesture of the user's hand. In order to test the proposed framework, we built a NUI system using the proposed technique, and verified that our system presents very stable performance even in the case that multiple objects exist simultaneously in the crowded environment, as well as in the situation that the scene is occluded temporarily. We also verified that our system ensures running speed of 24-30 frames per second throughout the experiments.