• Title/Summary/Keyword: Human-in-the-loop evaluation

Search Result 14, Processing Time 0.024 seconds

HUMAN-IN-THE-LOOP EVALUATION OF A VEHICLE STABILITY CONTROLLER USING A VEHICLE SIMULATOR

  • Chung, T.;Kim, J.;Yi, K.
    • International Journal of Automotive Technology
    • /
    • v.5 no.2
    • /
    • pp.109-114
    • /
    • 2004
  • This paper presents a closed-loop evaluation of the Vehicle Stability Control (VSC) system using a vehicle simulator. Human driver-VSC interactions have been investigated under realistic operating conditions in the laboratory. Braking control inputs for vehicle stability enhancement have been directly derived from the sliding control law based on vehicle planar motion equations with differential braking. A driving simulator has been validated using actual vehicle driving test data. Real-time human-in-the loop simulation results in realistic driving situations have shown that the proposed controller reduces driving effort and enhances vehicle stability.

Human-in-the Loop Evaluation of Advanced Safety Vehicles Using a Vehicle Simulator (차량 시뮬레이터를 이용한 첨단안전차량의 Human-in-the Loop 성능평가)

  • 이경수
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.26 no.4
    • /
    • pp.6-10
    • /
    • 2004
  • 자동차의 능동안전(Active Safety)을 중요시하는 경향은 1990년대부터 부각되기 시작하였다. 사고발생 후에 피해를 최소화하려는 Passive Safety 기술과 사고를 방지하고 사고의 피해를 줄이는 Active Safety 기술의 효과적인 조합을 통하여 안전을 확보하는 차량을 첨단 안전차량(ASV, Advanced Safety Vehicle)이라 한다.(중략)

  • PDF

Evaluation of Vehicle Stability Control System Using Driving Simulator (주행 시뮬레이터를 이용한 차량 안정성 제어기의 성능 검증)

  • 정태영;이건복;이경수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.139-145
    • /
    • 2004
  • This paper presents human-in-the-loop evaluations of vehicle stability control(VSC) system using a driving simulator. A driving simulator which contains full vehicle nonlinear model is evaluated by using actual vehicle test data on the same driving conditions. Braking control inputs for Vehicle Stability Control system have been directly derived from the sliding control law based on vehicle planar motion equations with differential braking. Closed-loop simulation results at realistic driving situations have shown that the proposed controller reduces driving effort of a driver and enhances stability of a vehicle.

Implementation of DYLAM-3 to Core Uncovery Frequency Estimation in Mid-Loop Operation

  • Kim, Dohyoung;Chang hyun Chung;Moosung Jae
    • Nuclear Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.531-540
    • /
    • 1998
  • The DYLAM-3 code which overcomes the limitation of event tree/fault tree was applied to LOOP (Loss of Off-site Power) in the mid-loop operation employing HEPs (Human Error Probabilities) supplied by the ASEP (Accident Sequence Evaluation Program) and the SEPLOT (Systematic Evaluation Procedure for Low power/shutdown Operation Task) procedure in this study. Thus the time history of core uncovery frequency during the mid-loop operation was obtained. The sensitivity calculations in the operator's actions to prevent core uncovery under LOOP in the mid-loop operation were carried out. The analysis using the time dependent HEP was performed on the primary feed & bleed which has the most significant effect on core uncovery frequency. As the result, the increment of frequency is shown after 200 minutes duration of simulation conditions. This signifies the possibility of increment in risk after 200 minutes. The primary feed & bleed showed the greatest impact on core uncovery frequency and the recovery of the SCS (Shutdown Cooling System) showed the least impact. Therefore the efforts should be taken on the primary feed & bleed to reduce the core uncovery frequency in the mid-loop operation. And the capability of DYLAM-3 in applying to the time dependent concerns could be demonstrated.

  • PDF

Studies on the preference of weft knit fabrics (위편성 니트 소재의 선호도에 관한 연구)

  • Ju, Jeong-Ah
    • Korean Journal of Human Ecology
    • /
    • v.14 no.4
    • /
    • pp.665-671
    • /
    • 2005
  • This study aims to examine the effect of structural properties, subjective textures, sensibilities, and objective handle on the preference for weft knit fabrics, and then to provide useful information in planning and designing knit fabrics through predicting the preference. We made 20 plain knit fabrics, as specimens, with a combination of 5 kinds of wool/rayon fiber contents and 4 kinds of stitch loop length. For the subjective evaluation of textures, sensibilities, and preference, we used the questionnaire that had been developed in the previous study. The data analysis was conducted with Pearson's correlation analysis, ANOVA, Duncann multiple range test and regression analysis. The results are as follows: In relationship of structural properties and preference, we could not recognize any difference in whole ranges of wool/ rayon fiber contents and in 7.5mm and less stitch loop length. On the other hand, we could find the decrease of preference in over 7.5mm stitch loop length. As to subjective textures and sensibilities, a multiple regression analysis of preference indicated a higher determination coefficient by sensibilities than by textures. But there were little correlation between a objective handle and preference of weft knit fabrics.

  • PDF

Development of a Driving Simulator for Telematics Human-Machine Interface Studies (텔레매틱스 HMI 연구를 위한 드라이빙 시뮬레이터의 개발)

  • Koo, Tae-Yun;Kim, Bae-Young;Shin, Hee-Jong;Son, Young-Tak;Suh, Myung-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.4
    • /
    • pp.16-23
    • /
    • 2009
  • Driving simulators are useful tools not only to test the components of future cars but also to evaluate the telematics service and HMI (Human-Machine Interface). However driving simulators cannot be implemented to test and evaluate the telematics service system because the GPS (Global Positioning System) which contains basic functional support for the telematics module do not work in the VR (virtual reality) environment. This paper presents a method to implement telematics service to a driving simulator by developing the GPS simulator which is able to emulate GPS satellite signals consist of NMEA-0183 protocol and RS232C communication standards. It is expected that the driving simulator with the GPS simulator can be used to study HMI and human-factor evaluations of the commercial telematics system to realize the HiLES (Human-in-the-Loop Evaluation System).

Evaluation of Novel Method of Hand Gesture Input to Define Automatic Scanning Path for UAV SAR Missions (손 제스처를 이용하여 탐색 구조용 무인항공기의 자동 스캐닝 경로를 정의하는 가상현실 입력방법 개발 및 평가)

  • Chang-Geun Oh
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.4
    • /
    • pp.473-480
    • /
    • 2023
  • This study evaluated a novel method of defining the automatic flight path of unmanned aerial vehicles (UAVs) for search and rescue missions in a VR environment. The developed VR content reserves miniature digital twins of a building in the fire and a steep mountain terrain site. The users drow the UAV's scanning path using hand gestures on the surface of digital twins, and then the UAV make an automatic flight along the defined path. According to human-in-the-loop simulation tests comparing the novel method with a conventional manual flight task with 19 participants, the novel method did not improve the mission performance but participants felt a lower mental workload. The designer may need to consider the automation support on the vulnerable points of the SAR mission environment while maintaining experts' mapping capability.

Development and Validation of Robot Steered EPS HILS System (로봇 조향 기반 EPS HILS 시스템의 개발 및 검증)

  • Hong, Taewook;Kwon, Jaejoon;Park, Kihong;Ki, Siwoo;Choi, Sangsoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.1
    • /
    • pp.85-95
    • /
    • 2013
  • As the conventional hydraulic power steering system in the passenger vehicles is being rapidly replaced by EPS (Electric Power Steering) system, performance evaluation of the EPS system has become an important issue in the automotive industries. But the evaluation process takes significant expertise since steering conditions in the test protocols must be implemented with high accuracy. EPS HILS (Hardware-In the-Loop Simulation) system is developed together with robot steering system in this study. Main components of EPS HILS system include: C-EPS hardware, CarSim vehicle model, and road reaction force generation system powered by servo motor. The robot steering system, operated by another servo motor, was combined with EPS HILS system to substitute for steering efforts of human driver. The road reaction force generation system and the robot steering system were carefully validated by using the data obtained from vehicle tests. An on-center handling test was conducted by using EPS HILS system combined with the robot steering system. In the result of this study, robot-steered EPS HILS system developed with its high reliability and no need of skilled driver's, can be widely adopted to evaluate any performance of EPS system.

Design of a Full-range Adaptive Cruise Control Algorithm with Collision Avoidance (전구간 주행 및 충돌회피 제어 알고리즘 설계)

  • Moon, Seung-Wuk;Yi, Kyong-Su
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.849-854
    • /
    • 2007
  • This paper describes design and tuning of a full-range Adaptive Cruise Control (ACC) with collision avoidance. The control scheme is designed to control the vehicle so that it would feel natural to the human driver and passengers during normal safe driving situations and to avoid rear-end collision in vehicle following situations. In this study, driving situations are determined using a non-dimensional warning index and time-to-collision (TTC). A confusion matrix method based on natural driving data sets was used to tune control parameters in the proposed ACC System. An ECU-Brake Hardware-in-the-loop Simulation (HiLS) was developed and used for an evaluation of ACC System. The ECU-Brake HiLS results for alternative driving situation are compared to manual driving data measured on actual traffic way. The ACC/CA control logic implemented in an ECU was tested using the ECU-Brake HiLS in a real vehicle environment.

  • PDF

Design and Evaluation of an Agent-based Intelligent System Modeling Architecture for Cockpit Agenda Management (항공시스템 아젠다 관리를 위한 에이젼트 모델의 설계 및 평가)

  • Cha, Woo-Chang
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.6
    • /
    • pp.642-650
    • /
    • 2000
  • The pilot (human actor) involved in the control loop of the highly automated aircraft systems (machine actor) must be able to monitor these systems just as the machine actor must also be able to monitor the human actor. For its safety and better performance of the human machine system, each of the two elements must be knowledgeable about the other's intentions or goals. In fact, several recent accidents occurred due to goal conflicts between human and machines in a modern avionic system. To facilitate the coordination of these actors, a computational aid was developed. The aid, which operates in a part-task simulator environment, attempts to facilitate the management of the goals and functions being performed to accomplish them. To provide an accurate knowledge of both actors' goals and their function statuses, the aid uses agent-based objects representing the elements of the cockpit operations. This paper describes the development of the flightdeck goals and functions called Agenda Management.

  • PDF