• Title/Summary/Keyword: Human-System Interaction

Search Result 751, Processing Time 0.037 seconds

Spatiotemporal Grounding for a Language Based Cognitive System (언이기반의 인지시스템을 위한 시공간적 기초화)

  • Ahn, Hyun-Sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.1
    • /
    • pp.111-119
    • /
    • 2009
  • For daily life interaction with human, robots need the capability of encoding and storing cognitive information and retrieving it contextually. In this paper, spatiotemporal grounding of cognitive information for a language based cognitive system is presented. The cognitive information of the event occurred at a robot is described with a sentence, stored in a memory, and retrieved contextually. Each sentence is parsed, discriminated with the functional type of it, and analyzed with argument structure for connecting to cognitive information. With the proposed grounding, the cognitive information is encoded to sentence form and stored in sentence memory with object descriptor. Sentences are retrieved for answering questions of human by searching temporal information from the sentence memory and doing spatial reasoning in schematic imagery. An experiment shows the feasibility and efficiency of the spatiotemporal grounding for advanced service robot.

Human-Computer Interaction Survey for Intelligent Robot (지능형 로봇을 위한 인간-컴퓨터 상호작용(HCI) 연구동향)

  • Hong, Seok-Ju;Lee, Chil-Woo
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2006.11a
    • /
    • pp.507-511
    • /
    • 2006
  • Intelligent robot is defined as a system that it judges autonomously based on sensory organ of sight, hearing etc.. analogously with human. Human communicates using nonverbal means such as gesture in addition to language. If robot understands such nonverbal communication means, robot may become familiar with human . HCI (Human Computer Interaction) technologies are studied vigorously including face recognition and gesture recognition, but they are many problems that must be solved in real conditions. In this paper, we introduce the importance of contents and give application example of technology stressed on the recent research result about gesture recognition technology as one of most natural communication method with human.

  • PDF

Near-body Interaction Enhancement with Distance Perception Matching in Immersive Virtual Environment

  • Yang, Ungyeon;Kim, Nam-Gyu
    • Journal of Multimedia Information System
    • /
    • v.8 no.2
    • /
    • pp.111-120
    • /
    • 2021
  • As recent virtual reality technologies provide a more natural three-dimensional interactive environment, users naturally learn to explore space and interact with synthetic objects. The virtual reality researcher develops a technique that realizes realistic sensory feedback to get appropriate feedback to sense input behavior. Although much recent virtual reality research works extensively consider the human factor, it is not easy to adapt to all new virtual environment contents. Among many human factors, distance perception has been treated as very important in virtual environment interaction accuracy. We study the experiential virtual environment with the feature of the virtual object connected with the real object. We divide the three-dimensional interaction, in which distance perception and behavior have a significant influence, into two types (whole-body movement and direct manipulation) and analyze the real and virtual visual distance perception heterogeneity phenomenon. Also, we propose a statistical correction method that can reduce a near-body movement and manipulation error when changing the interaction location and report the experiment results proving its effectiveness.

Review of ISO Standards on Human-System Interaction Published during 2008-2013

  • Lee, Dhong Ha
    • Journal of the Ergonomics Society of Korea
    • /
    • v.33 no.5
    • /
    • pp.433-452
    • /
    • 2014
  • Objective: The aim of this study is to give ergonomists the brief summary of the recently published ISO standards on human-system interaction and tips for application of the standards. Background: Standard developers did hard work on developing a standard in a concise manner. But most of standards are often bulky in volume. Readers of the standards are difficult to catch key points from the voluminous contents of standards and intermingle among them. Method: Focused on newly developed display/control technology, this study reviewed the 14 ISO standards on human-system interaction published during 2008-2013 and summarized key points from them. Results: Schematic diagrams and tables concisely illustrated the processes, procedures, dimensions, or best practices recommended by the standards concerning conception, design, and usability testing for consumer products. Conclusion: The standards provided the minimum level of requirements on design and evaluation on the physical input devices, electronic displays, and control interfaces based on the current state of technology. But the minimum requirements specified in the standards nowadays become mandatory ergonomic requirements in global trade world. Application: Ergonomists can take a quick and broad view on international standardization activities on newly developed display/control technology from this summary study.

Human-machine system optimization in nuclear facility systems

  • Corrado, Jonathan K.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3460-3463
    • /
    • 2021
  • Present computing power and enhanced technology is progressing at a dramatic rate. These systems can unravel complex issues, assess and control processes, learn, and-in many cases-fully automate production. There is no doubt that technological advancement is improving many aspects of life, changing the landscape of virtually all industries and enhancing production beyond what was thought possible. However, the human is still a part of these systems. Consequently, as the advancement of systems transpires, the role of humans within those systems will unavoidably continue to adapt as well. Due to the human tendency for error, this technological advancement should compel a persistent emphasis on human error reduction as part of maximizing system efficiency and safety-especially in the context of the nuclear industry. Within this context, as new systems are designed and the role of the human is transformed, human error should be targeted for a significant decrease relative to predecessor systems and an equivalent increase in system stability and safety. This article contends that optimizing the roles of humans and machines in the design and implementation of new types of automation in nuclear facility systems should involve human error reduction without ignoring the essential importance of human interaction within those systems.

Tactile Sensation Display with Electrotactile Interface

  • Yarimaga, Oktay;Lee, Jun-Hun;Lee, Beom-Chan;Ryu, Je-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.145-150
    • /
    • 2005
  • This paper presents an Electrotactile Display System (ETCS). One of the most important human sensory systems for human computer interaction is the sense of touch, which can be displayed to human through tactile output devices. To realize the sense of touch, electrotactile display produces controlled, localized touch sensation on the skin by passing small electric current. In electrotactile stimulation, the mechanoreceptors in the skin may be stimulated individually in order to display the sense of vibration, touch, itch, tingle, pressure etc. on the finger, palm, arm or any suitable location of the body by using appropriate electrodes and waveforms. We developed an ETCS and investigated effectiveness of the proposed system in terms of the perception of roughness of a surface by stimulating the palmar side of hand with different waveforms and the perception of direction and location information through forearm. Positive and negative pulse trains were tested with different current intensities and electrode switching times on the forearm or finger of the user with an electrode-embedded armband in order to investigate how subjects recognize displayed patterns and directions of stimulation.

  • PDF

Development of integrated test facility for human factors experiments in nuclear power plant (원자력발전소에서의 인간공학적 실험평가를 위한 종합 실험설비 개발)

  • 오인석;이현철;천세우;박근옥;심봉식
    • Journal of the Ergonomics Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.107-117
    • /
    • 1997
  • It is necessary to evaluate HMI inaspects of human factors in the design stage of MMIS(man machine interface system) and feedback the result of evaluation because operators performance is mainly influenced by the HMI. Therefore, the MMIS design should be reflected the operators psychological, behavioral and physiological characteristics in the interaction with human machine interface(HMI) in order to improve the safety and availability of the MMIS of a nuclear power plant(NPP) by reduction of human error. The development of human factors experimental evaluation techniques and integrated test facility(ITF) for the human factors evaluation become an important research field to resolve hi,am factors issues on the design of an advanced control room(ACR). We developed am ITF, which is aimed to experiment with the design of the ACR and the human machine interaction as it relates to the control of NPP. This paper presents the development of an ITF that consists of three rooms such as main test room(MTR), supporting test room(STR) and experiment control room(ECR). And, the ITF has a various facilities such as a human machine simulator(HMS), experimental measurement systems and data analysis and experiment evaluation supporting system(DAEXESS). The HMS consists of full-scope simulation model of Korean standard NPP and advanced HMI based on visual display nits (VDUS) such as touch color CRT, large scale display panel(LSDP), flat panel display unit and so on.

  • PDF

Laser pointer detection using neural network for human computer interaction (인간-컴퓨터 상호작용을 위한 신경망 알고리즘기반 레이저포인터 검출)

  • Jung, Chan-Woong;Jeong, Sung-Moon;Lee, Min-Ho
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.16 no.1
    • /
    • pp.21-30
    • /
    • 2011
  • In this paper, an effective method to detect the laser pointer on the screen using the neural network algorithm for implementing the human-computer interaction system. The proposed neural network algorithm is used to train the patches without a laser pointer from the input camera images, the trained neural network then generates output values for an input patch from a camera image. If a small variation is perceived in the input camera image, amplify the small variations and detect the laser pointer spot in the camera image. The proposed system consists of a laser pointer, low-price web-camera and image processing program and has a detection capability of laser spot even if the background of computer monitor has a similar color with the laser pointer spot. Therefore, the proposed technique will be contributed to improve the performance of human-computer interaction system.

A Study on the Intention to Use a Robot-based Learning System with Multi-Modal Interaction (멀티모달 상호작용 중심의 로봇기반교육 콘텐츠를 활용한 r-러닝 시스템 사용의도 분석)

  • Oh, Junseok;Cho, Hye-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.6
    • /
    • pp.619-624
    • /
    • 2014
  • This paper introduces a robot-based learning system which is designed to teach multiplication to children. In addition to a small humanoid and a smart device delivering educational content, we employ a type of mixed-initiative operation which provides enhanced multi-modal cognition to the r-learning system through human intervention. To investigate major factors that influence people's intention to use the r-learning system and to see how the multi-modality affects the connections, we performed a user study based on TAM (Technology Acceptance Model). The results support the fact that the quality of the system and the natural interaction are key factors for the r-learning system to be used, and they also reveal very interesting implications related to the human behaviors.

Development of Wearable Assistance Suite for Interaction with Ubiquitous Environment (유비쿼터스 환경과 상호작용을 위한 착용형 도움 슈트 개발)

  • Seo, Yong-Ho;Han, Tae-Woo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.5
    • /
    • pp.93-99
    • /
    • 2009
  • The wearable computer that can understand the context of human life and intelligently communicate with various electronic media in ubiquitous computing environment would be very useful as an assistant for humans. In this paper we introduce an intelligent wearable assistance suite. The proposed wearable suite can interact with both humans and electronic media in ubiquitous computing environment. The developed system can sense the interactive electronic media that a user wants to use and also communicate with it. By utilizing these interaction capabilities, it intermediates between each media and the user and offers a friendlier interface to the user who wears this system. We also show the usages of the proposed system by demonstrating its interaction with the interactive electronic media in ubiquitous computing environment.

  • PDF