In this research, we suggest a hybrid intelligent Web recommendation systems based on Web data mining and case-based reasoning (CBR). One of the important research topics in the field of Internet business is blending artificial intelligence (AI) techniques with knowledge discovering in database (KDD) or data mining (DM). Data mining is used as an efficient mechanism in reasoning for association knowledge between goods and customers' preference. In the field of data mining, the features, called attributes, are often selected primary for mining the association knowledge between related products. Therefore, most of researches, in the arena of Web data mining, used association rules extraction mechanism. However, association rules extraction mechanism has a potential limitation in flexibility of reasoning. If there are some goods, which were not retrieved by association rules-based reasoning, we can't present more information to customer. To overcome this limitation case, we combined CBR with Web data mining. CBR is one of the AI techniques and used in problems for which it is difficult to solve with logical (association) rules. A Web-log data gathered in real-world Web shopping mall was given to illustrate the quality of the proposed hybrid recommendation mechanism. This Web shopping mall deals with remote-controlled plastic models such as remote-controlled car, yacht, airplane, and helicopter. The experimental results showed that our hybrid recommendation mechanism could reflect both association knowledge and implicit human knowledge extracted from cases in Web databases.
한국지능정보시스템학회 2001년도 The Pacific Aisan Confrence On Intelligent Systems 2001
/
pp.431-434
/
2001
Knowledge discovery in databases(KDD) is the process for extracting valid, novel, potentially useful and understandable knowledge form real data. There are many academic and industrial activities with new technologies and application areas. Particularly, data mining is the core step in the KDD process, consisting of many algorithms to perform clustering, pattern recognition and rule induction functions. The main goal of these algorithms is prediction and description. Prediction means the assessment of unknown variables. Description is concerned with providing understandable results in a compatible format to human users. We introduce an efficient data mining algorithm considering predictive and descriptive capability. Reasonable pattern is derived from real world data by a revised neural network model and a proposed fuzzy rule extraction technique is applied to obtain understandable knowledge. The proposed neural network model is a hierarchical self-organizing system. The rule base is compatible to decision makers perception because the generated fuzzy rule set reflects the human information process. Results from real world application are analyzed to evaluate the system\`s performance.
Due to the increasing use of very large databases, mining useful information and implicit knowledge from databases is evolving. However, most conventional data mining algorithms identify the relationship among features using binary values (TRUE/FALSE or 0/1) and find simple If-THEN rules at a single concept level. Therefore, implicit knowledge and causal relationships among features are commonly seen in real-world database and applications. In this paper, we thus introduce the mechanism of mining fuzzy association rules and constructing causal knowledge base form database. Acausal knowledge base construction algorithm based on Fuzzy Cognitive Map(FCM) and Srikant and Agrawal's association rule extraction method were proposed for extracting implicit causal knowledge from database. Fuzzy association rules are well suited for the thinking of human subjects and will help to increase the flexibility for supporting users in making decisions or designing the fuzzy systems. It integrates fuzzy set concept and causal knowledge-based data mining technologies to achieve this purpose. The proposed mechanism consists of three phases: First, adaptation of the fuzzy membership function to the database. Second, extraction of the fuzzy association rules using fuzzy input values. Third, building the causal knowledge base. A credit example is presented to illustrate a detailed process for finding the fuzzy association rules from a specified database, demonstration the effectiveness of the proposed algorithm.
데이터 마이닝(Data Mining)은 수집된 데이터로 부터 감춰진 패턴을 찾는 작업이다. 여기에서 수집된 데이터는 예측 및 추천을 위한 기반 정보로 중요한 역할을 하며, 분석 결과의 성능을 향상시키기 위해 잘못된(Missing value) 데이터를 선별하는 과정을 필요로 한다. 수집한 데이터에서 의도하지 못한 데이터를 선별하기 위한 기존의 방법은 주로 통계적이거나 단순 거리(Distance)에 기반을 둔 방법을 이용하였다. 하지만 환경 및 데이터의 특성을 고려하지 못하여, 의미 있는 데이터도 함께 분석에서 제외 될 수 있는 문제점을 가지고 있다. 본 논문은 인간의 경험적 지식을 수집된 데이터와 비교하여 가중치로 변환하고, 의사결정트리(Decision Tree)의 생성에 이용한다. 생성된 트리는 인간의 지식이 반영되어 기존의 분석 방법보다 신뢰성이 높다고 할 수 있으며, 실험을 통하여 제안하는 방법의 유효성을 확인하였다.
Recently, the exhibition industry has developed rapidly with the development of information technologies. Most exhibitors in an exhibition plan and deploy many events that may provide advantages to visitors as a method of effective promotion. The growth and propagation of wireless technologies is a powerful marketing tool for exhibitors. However, exhibitors still rely on domain experts who are costly and time consuming because of the manual knowledge input procedure. Moreover, it is prone to biases and errors and not suitable for managing fast-growing and tremendous amounts of data that far exceed a human's ability to comprehend. To overcome these problems, data mining technology may be a great alternative, but it needs to be fit to each exhibition. This study uses data mining technology with the Predictive Model Markup Language (PMML) to suggest a system that supports intelligent services and that improves stakeholder satisfaction. This system provides advantages to the exhibitor, show organizer, and system designer, and is first enhanced by integrating data mining technologies through the knowledge of exhibition experts. Second, using the PMML, the system can automate the process of applying data mining models to solve real-time processing problems in the exhibition environment.
대학의 학사관리 시스템은 학생이 입학하여 졸업하기까지 수행하는 여러 가지 학사활동 및 과외활동으로부터 발생하는 방대한 데이터를 보유하고 있다. 그러나 이들을 학생들의 전공지도나 진로지도에 효과적으로 활용하지 못하고 있다. 본 논문에서는 학사관리 시스템에 축적된 정보를 대상으로 학생들의 전공선택 및 진로지도에 도움을 줄 수 있는 새로운 정보와 지식을 생성하는 방법을 개발, 제시하였다. 특히, 요인분석, 계층분석 (AHP) 기법을 동원하여 데이터 마이닝을 수행함으로써 유용한 지식과 규칙을 생성하였다. 방법론에 사용할 기본 자료는 학생들의 Holland 적성검사 결과이다. 연구의 결과로서 기존의 학생지도 담당자가 수작업으로는 알아낼 수 없었던 학생지도에 관한 유용한 규칙을 도출할 수 있었다.
데이터마이닝은 방대한 데이터 자료로부터 숨어있는 지식이나 유용한 정보를 추출하는 과정이다. 이러한 데이터 마이닝 알고리즘은 통계학, 전자계산학, 그리고 기계학습 분야에서의 오랜 기간동안 이루어진 연구 결과의 산물이다. 어느 특정한 상황에 적용하는 특정한 기술들의 선택은 구현되어야 하는 데이터 마이닝 임무의 성격과 가용한 데이터의 성격에 의존한다. 데이터 마이닝에는 여러 임무가 있으며, 그 중에서 가장 대표적인 임무가 분류라고 (classification) 볼 수 있다. 분류는 인간 사고의 기본적인 요소이기 때문에 여러 응용 분야에서 많은 연구가 진행되어 왔으며, 문제 분석의 첫 단계라고 볼 수 있다. 본 논문에서는 학습문제에서 강건성(robust)을 갖는 유전자 알고리즘 기반의 분류시스템을 제안하고, 데이터 마이닝에서 중요한 분류기능에 관련된 문제인 nDmC에 응용해서 그 유효성을 검증한다.
대학의 학사관리 시스템은 학생이 입학하여 졸업하기까지 수행하는 여러 가지 학사활동 및 과외활동으로부터 발생하는 방대한 데이터를 보유하고 있다. 그러나 이들을 학생들의 전공지도나 진로지도에 효과적으로 활용하지 못하고 있다. 본 논문에서는 학사관리 시스템에 축적된 정보를 대상으로 데이터 마이닝 기법을 적용하여 학생들의 전공선택 및 진로지도에 도움을 줄 수 있는 새로운 정보와 지식을 생성하는 방법을 개발, 제시하였다. 이 연구를 위하여 요인분석, 계층분석 (AHP), 인공신경망, CART 기법 등을 동원하여 데이터 마이닝을 수행함으로써 유용한 지식과 규칙을 생성하였다. 방법론의 개발에 사용된 기본 자료들은 학생들의 Holland 적성검사, TOEIC 점수, 이수과목, 평점 등이다. 연구의 결과로서 기존의 학생지도 담당자가 수작업으로는 알아낼 수 없었던 학생지도에 관한 유용한 규칙을 도출할 수 있었다.
Text data plays a significant role in understanding and analyzing trends in consumer, business, and social sectors. For text analysis, there must be a corpus that reflects specific domain knowledge. However, in the field of fashion, the professional corpus is insufficient. This study aims to develop a taxonomy and thesaurus that considers the specialty of fashion products. To this end, about 100,000 fashion vocabulary terms were collected by crawling text data from WSGN, Pantone, and online platforms; text subsequently was extracted through preprocessing with Python. The taxonomy was composed of items, silhouettes, details, styles, colors, textiles, and patterns/prints, which are seven attributes of clothes. The corpus was completed through processing synonyms of terms from fashion books such as dictionaries. Finally, 10,294 vocabulary words, including 1,956 standard Korean words, were classified in the taxonomy. All data was then developed into a web dictionary system. Quantitative and qualitative performance tests of the results were conducted through expert reviews. The performance of the thesaurus also was verified by comparing the results of text mining analysis through the previously developed corpus. This study contributes to achieving a text data standard and enables meaningful results of text mining analysis in the fashion field.
Quality design in practice highly depends on human designer's intuition and past experiences due to lack of formal knowledge about the relationship among 10 variables. This paper represents an data mining approach for developing quality design support system that integrates Case Based Reasoning (CBR) and Artificial Neural Networks (ANN) to effectively support all the steps in quality design process. CBR stores design cases in a systematic way and retrieve them quickly and accurately. ANN predicts the resulting quality attributes of design alternatives that are generated from CBR's adaptation process. When the predicted attributes fail to meet the target values, quality design simulation starts to further adapt the alternatives to the customer's new orders. To implement the quality design simulation, this paper suggests (1) the data screening method based on ξ-$\delta$ Ball to obtain the robust ANN models from the large production data bases, (2) the procedure of quality design simulation using ANN and (3) model management system that helps users find the appropriate one from the ANN model base. The integration of CBR and ANN provides quality design engineers the way that produces consistent and reliable design solutions in the remarkably reduced time.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.