• Title/Summary/Keyword: Human visual intelligence

Search Result 74, Processing Time 0.021 seconds

Empirical Research on the Interaction between Visual Art Creation and Artificial Intelligence Collaboration (시각예술 창작과 인공지능 협업의 상호작용에 관한 실증연구)

  • Hyeonjin Kim;Yeongjo Kim;Donghyeon Yun;Hanjin Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.517-524
    • /
    • 2024
  • Generative AI, exemplified by models like ChatGPT, has revolutionized human-machine interactions in the 21st century. As these advancements permeate various sectors, their intersection with the arts is both promising and challenging. Despite the arts' historical resistance to AI replacement, recent developments have sparked active research in AI's role in artistry. This study delves into the potential of AI in visual arts education, highlighting the necessity of swift adaptation amidst the Fourth Industrial Revolution. This research, conducted at a 4-year global higher education institution located in Gyeongbuk, involved 70 participants who took part in a creative convergence module course project. The study aimed to examine the influence of AI collaboration in visual arts, analyzing distinctions across majors, grades, and genders. The results indicate that creative activities with AI positively influence students' creativity and digital media literacy. Based on these findings, there is a need to further develop effective educational strategies and directions that incorporate AI.

Analyzing and Solving GuessWhat?! (GuessWhat?! 문제에 대한 분석과 파훼)

  • Lee, Sang-Woo;Han, Cheolho;Heo, Yujung;Kang, Wooyoung;Jun, Jaehyun;Zhang, Byoung-Tak
    • Journal of KIISE
    • /
    • v.45 no.1
    • /
    • pp.30-35
    • /
    • 2018
  • GuessWhat?! is a game in which two machine players, composed of questioner and answerer, ask and answer yes-no-N/A questions about the object hidden for the answerer in the image, and the questioner chooses the correct object. GuessWhat?! has received much attention in the field of deep learning and artificial intelligence as a testbed for cutting-edge research on the interplay of computer vision and dialogue systems. In this study, we discuss the objective function and characteristics of the GuessWhat?! game. In addition, we propose a simple solver for GuessWhat?! using a simple rule-based algorithm. Although a human needs four or five questions on average to solve this problem, the proposed method outperforms state-of-the-art deep learning methods using only two questions, and exceeds human performance using five questions.

Learning Method using RDS for Creative Problem Solving (RDS를 이용한 창의적 문제해결 학습방법)

  • Hong, Seong-Yong
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.11
    • /
    • pp.1126-1130
    • /
    • 2010
  • Research on intelligent robot is in active progress as the next generation IT education area. Since intelligent robots are closely related to the real human world, they should provide human behaviors or judging ability as their functions. For this reason, research is recently done not only on diverse hardware of robot education but also on service component architecture which includes various functions. In this paper we propose a study on learning to creative solve problems using RDS(Robotics Developer Studio). RDS is a software tool to control or program intelligence robot as a software module. Using service component framework which considers standardization of the integrated development of intelligent robot, we expect to provide 3-dimensional visual simulation environment, and save time and costs in education the environment for the intelligence robot experiment.

Modelling of the Information Process with Visual and Audio in Human Brain (두뇌의 시$\cdot$청각 정보처리 과정의 모델링)

  • 김성주;서재용;조현찬;김성현;전홍태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.05a
    • /
    • pp.187-190
    • /
    • 2002
  • 인간의 두뇌에서는 갖가지 다양한 형태의 입력들을 이용하여 동시에 여러 가지의 판단, 추론 및 기억 등의 기능을 수행한다 이러한 이유로 인간 두뇌는 거대한 지능형 정보처리기라고 할 수 있다 현재 정보처리 메커니즘은 다양한 형태로 발달되고 있지만 그 중에서도 지능형 정보처리 메커니즘으로는 소프트 컴퓨팅 기법을 응용한 것이 대부분이다. 본 논문에서는 소프트 컴퓨팅 기법을 이용하여 두뇌에서의 시각, 청각의 정보처리 과정을 하나의 구조로 모델링하고자 한다. 시각에서의 정보와 청각에서의 정보는 각기 다른 모듈에서 처리되는 방식을 취하고 있으며, 최종적으로 두 감각 정보를 이용한 처리가 가능하도록 모듈형태의 전체적인 구조를 지니고 있다. 상이한 두 가지의 정보를 동시에 처리하는 과정을 모델링함으로써 복잡한 문제의 해결 및 다양한 경우에 대한 고려를 수행하여 인간 두뇌 모델링의 기초를 마련하고자 한다.

  • PDF

Research Trends for Deep Learning-Based High-Performance Face Recognition Technology (딥러닝 기반 고성능 얼굴인식 기술 동향)

  • Kim, H.I.;Moon, J.Y.;Park, J.Y.
    • Electronics and Telecommunications Trends
    • /
    • v.33 no.4
    • /
    • pp.43-53
    • /
    • 2018
  • As face recognition (FR) has been well studied over the past decades, FR technology has been applied to many real-world applications such as surveillance and biometric systems. However, in the real-world scenarios, FR performances have been known to be significantly degraded owing to variations in face images, such as the pose, illumination, and low-resolution. Recently, visual intelligence technology has been rapidly growing owing to advances in deep learning, which has also improved the FR performance. Furthermore, the FR performance based on deep learning has been reported to surpass the performance level of human perception. In this article, we discuss deep-learning based high-performance FR technologies in terms of representative deep-learning based FR architectures and recent FR algorithms robust to face image variations (i.e., pose-robust FR, illumination-robust FR, and video FR). In addition, we investigate big face image datasets widely adopted for performance evaluations of the most recent deep-learning based FR algorithms.

Deep Reinforcement Learning in ROS-based autonomous robot navigation

  • Roland, Cubahiro;Choi, Donggyu;Jang, Jongwook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.47-49
    • /
    • 2022
  • Robot navigation has seen a major improvement since the the rediscovery of the potential of Artificial Intelligence (AI) and the attention it has garnered in research circles. A notable achievement in the area was Deep Learning (DL) application in computer vision with outstanding daily life applications such as face-recognition, object detection, and more. However, robotics in general still depend on human inputs in certain areas such as localization, navigation, etc. In this paper, we propose a study case of robot navigation based on deep reinforcement technology. We look into the benefits of switching from traditional ROS-based navigation algorithms towards machine learning approaches and methods. We describe the state-of-the-art technology by introducing the concepts of Reinforcement Learning (RL), Deep Learning (DL) and DRL before before focusing on visual navigation based on DRL. The case study preludes further real life deployment in which mobile navigational agent learns to navigate unbeknownst areas.

  • PDF

A Case Study of Human-AI Co-creation(HAIC) in Fashion Design (패션 디자인에서의 인간-AI 공동창조(HAIC) 사례 연구)

  • Kyunghee Chung;Misuk Lee
    • Journal of Fashion Business
    • /
    • v.27 no.4
    • /
    • pp.141-162
    • /
    • 2023
  • With the prospect that integrating creative AI in the fashion design field will become more visible, this study considered the case of creative fashion design development through Human-AI Co-creation (HAIC). Methodologically, this research encompasses a literature review and empirical investigations. In the literature review, the fashion design and creative HAIC processes, and the possibilities of integrating AI in fashion design were considered. In the empirical study, based on the case analysis of generating fashion design through HAIC, the HAIC type according to the role and interaction method, and characteristics of humans and AI was considered, and the HAIC process for fashion design was derived. The results of this study are summarized as follows. First, HAIC types in fashion design are divided into four types: AI-driven passive HAIC, human-driven passive HAIC, flexible interaction-based HAIC, and integrated interaction-based value creation HAIC. Second, the stages of the HAIC process for creative fashion design can be broadly divided into semantic data integration, visual ideation, design creation and expansion, design presentation, and design/manufacturing solution and UX platform creation. Third, in fashion design, HAIC contributes to human ability, enhancement of creativity, achievement of efficient workflow, and creation of new values. This research suggests that HAIC has the potential to revolutionize the fashion design industry by facilitating collaboration between humans and AI; consequently, enhancing creativity, and improving the efficiency of the design process. It also offers a framework for understanding the different types of HAIC and the stages involved in the creative fashion design process.

A Hierarchical Expert System for Process Planning and Material Selection (공정계획과 재료선정의 동시적 해결을 위한 계층구조 전문가시스템)

  • 권순범;이영봉;이재규
    • Journal of Intelligence and Information Systems
    • /
    • v.6 no.2
    • /
    • pp.29-40
    • /
    • 2000
  • Process planning (selection and ordering of processes) and material selection for product manufacturing are two key things determined before taking full-scale manufacturing. Knowledge on product design. material characteristics, processes, time and cost all-together are mutually related and should be considered concurrently. Due to the complexity of problem, human experts have got only one of the feasilbe solutions with their field knowledge and experiences. We propose a hierarchical expert system framework of knowledge representation and reasoning in order to overcome the complexity. Manufacturing processes have inherently hierarchical relationships, from top level processes to bottom level operation processes. Process plan of one level is posted in process blackboard and used for lower level process planning. Process information on blackboard is also used to adjust the process plan in order to resolve the dead-end or inconsistency situation during reasoning. Decision variables for process, material, tool, time and cost are represented as object frames, and their relationships are represented as constraints and rules. Constraints are for relationship among variables such as compatibility, numerical inequality etc. Rules are for causal relationships among variables to reflect human expert\`s knowledge such as process precedence. CRSP(Constraint and Rule Satisfaction Problem) approach is adopted in order to obtain solution to satisfy both constraints and rules. The trade-off procedure gives user chances to see the impact of change of important variables such as material, cost, time and helps to determine the preferred solution. We developed the prototype system using visual C++ MFC, UNIK, and UNlK-CRSP on PC.

  • PDF

Methodological Comparison of Visualization for Tele-operated Robot Visual Guidance (원격 로봇 비주얼 가이던스를 위한 가상벽 가시화 방법론 비교)

  • Kim, Dong Yeop;Shin, Dong-In;Hwang, Jung-Hoon;Kim, Young-Ouk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.11
    • /
    • pp.877-882
    • /
    • 2016
  • Disaster robots have accepted tele-operation in order to share the intelligence of human operators and robot systems. Virtual wall is one of the tele-operation technology to support recognition of human operator. If the virtual wall can block the robot from dangers, the operator will feel comfortable and can concentrate on fundamental missions. In this paper, we proposes and compares three methods for virtual wall visualization in tele-operation using 3D reconstruction. First is a virtual wall visualized only with edges. A wall filled with transparent color is the second method. Finally, third method is a texture-mapped virtual wall. In the experiments, we discuss their merits and demerits in view of robot tele-operation.

Transfer Learning Based Real-Time Crack Detection Using Unmanned Aerial System

  • Yuvaraj, N.;Kim, Bubryur;Preethaa, K. R. Sri
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.4
    • /
    • pp.351-360
    • /
    • 2020
  • Monitoring civil structures periodically is necessary for ensuring the fitness of the structures. Cracks on inner and outer surfaces of the building plays a vital role in indicating the health of the building. Conventionally, human visual inspection techniques were carried up to human reachable altitudes. Monitoring of high rise infrastructures cannot be done using this primitive method. Also, there is a necessity for more accurate prediction of cracks on building surfaces for ensuring the health and safety of the building. The proposed research focused on developing an efficient crack classification model using Transfer Learning enabled EfficientNet (TL-EN) architecture. Though many other pre-trained models were available for crack classification, they rely on more number of training parameters for better accuracy. The TL-EN model attained an accuracy of 0.99 with less number of parameters on large dataset. A bench marked METU dataset with 40000 images were used to test and validate the proposed model. The surfaces of high rise buildings were investigated using vision enabled Unmanned Arial Vehicles (UAV). These UAV is fabricated with TL-EN model schema for capturing and analyzing the real time streaming video of building surfaces.