• Title/Summary/Keyword: Human thermal comfort

Search Result 183, Processing Time 0.028 seconds

Effect of Clothing Habit on Thermoregulation of Body A Comparative Study of Skirt and Slacks (스커트와 슬랙스의 의복착용습관이 인체의 체온조절에 미치는 영향)

  • 최영희;이순원
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.20 no.6
    • /
    • pp.983-991
    • /
    • 1996
  • This study focusses on how the skirt or slacks wearing habit affects the female physiology in her daily life. The healthy female college students have been trained to wear either skirt (group A) or slacks (group B) from late August to early January in order to study the effects of clothing habit on thermoregulatory responses. Also, the themoregulatory responses have been compared the healthy students groups with a physical trained students group (group C) to examine the effects of clothing habit. The changes in body temperatures of students have been studied under the cool environmental condition (15$\pm$1$^{\circ}C$, 60$\pm$5% RH, 0.25 m/sec). The results were as follows: 1. Rectal temperature of the group A was 0.4$^{\circ}C$ lower at 36.9$^{\circ}C$ than that of the group B The groups A and B were found identical before the training, while the groups A and C were identical after the training. 2. Mean skin temperature of the group A was 1.2$^{\circ}C$ lower than that of the group B. The groups A and C were identical after the training. 3. The thermal sensation was reflected to be cool by the group A and to be cold by the group B. As for the humidity sensation, the group A felt average, whereas the group B reported between average and slightly humid. In the case of comfort sensation, the group A felt average, while the group B felt between average and slightly uncomfortable. In summary, the 18 weeks of training has provided the skirt group an improved acclimatization to the cold environment . This group also showed an insulative-hypothermic adapta lion in a cold ambient temperature, as was the case for the physical trained group. It is concluded that wearing a skirt for a long period of time can be helpful to human body through gaining of thermoregulatory abilities.

  • PDF

Development of Impact-based Heat Health Warning System Based on Ensemble Forecasts of Perceived Temperature and its Evaluation using Heat-Related Patients in 2019 (인지온도 확률예보기반 폭염-건강영향예보 지원시스템 개발 및 2019년 온열질환자를 이용한 평가)

  • Kang, Misun;Belorid, Miloslav;Kim, Kyu Rang
    • Atmosphere
    • /
    • v.30 no.2
    • /
    • pp.195-207
    • /
    • 2020
  • This study aims to introduce the structure of the impact-based heat health warning system on 165 counties in South Korea developed by the National Institute of Meteorological Sciences. This system was developed using the daily maximum perceived temperature (PTmax), which is a human physiology-based thermal comfort index, and the Local ENSemble prediction system for the probability forecasts. Also, A risk matrix proposed by the World Meteorological Organization was employed for the impact-based forecasts of this system. The threshold value of the risk matrix was separately set depending on regions. In this system, the risk level was issued as four levels (GREEN, YELLOW, ORANGE, RED) for first, second, and third forecast lead-day (LD1, LD2, and LD3). The daily risk level issued by the system was evaluated using emergency heat-related patients obtained at six cities, including Seoul, Incheon, Daejeon, Gwangju, Daegu, and Busan, for LD1 to LD3. The high-risks level occurred more consistently in the shorter lead time (LD3 → LD1) and the performance (rs) was increased from 0.42 (LD3) to 0.45 (LD1) in all cities. Especially, it showed good performance (rs = 0.51) in July and August, when heat stress is highest in South Korea. From an impact-based forecasting perspective, PTmax is one of the most suitable temperature indicators for issuing the health risk warnings by heat in South Korea.

Effect of Ventilation on Heat Stress in the System of Short-Sleeve T-Shirt-Combat Uniform-Chemical, Biological, and Radioactive Protective Clothing (반팔 내의-전투복-화생방보호의 시스템에서 환기가 열적 스트레스에 미치는 영향)

  • Lee, Okkyung;Eom, Rani;Jung, Heesoo;Cho, Kyeong Min;Lee, Yejin
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.46 no.5
    • /
    • pp.836-847
    • /
    • 2022
  • This study establishes basic data for the development of a new Chemical, Biological, and Radioactive (CBR) protective clothing by selecting the ventilation position to optimize thermal comfort on the basis of the opening and closing of each part. Participants were eight men in their 20s who had previously worn CBR protective clothing. After vigorous exercise and perspiration, the microclimate of the clothing and skin temperature was measured. Results revealed that when the ventilation zipper was opened after exercising, the skin and clothing microclimate temperatures, which had increased during the exercise, decreased in the chest and shoulder blade regions. The clothing microclimate humidity decreased in the chest area. The change was greatest in the chest region; the skin temperature decreased by 0.2℃, the clothing microclimate temperature by 2.7℃, and the clothing microclimate humidity by 3.2%RH through ventilation. Thus, the opening that allows the exchange of accumulated heat and moisture while wearing the CBR protective clothing is efficient.

Heat Stress Assessment and the Establishment of a Forecast System to Provide Thermophysiological Indices for Harbor Workers in Summer (하계 항만열환경정보 제공을 위한 열환경 평가 및 예보시스템 구축)

  • Hwang, Mi-Kyoung;Yun, Jinah;Kim, Hyunsu;Kim, Young-Jun;Lim, Yeon-Ju;Lee, Young-Mi;Kim, Youngnam;Yoon, Euikyung;Kim, Yoo-Keun
    • Journal of Environmental Health Sciences
    • /
    • v.42 no.2
    • /
    • pp.92-101
    • /
    • 2016
  • Objectives: Outdoor workers are exposed to thermally stressful work environments. In this study, heat stress indices for harbor workers in summer were calculated to evaluate thermal comfort based on a human heat balance model. These indices are Physiological Subjective Temperature (PST), Dehydration Risk (DhR), and Overheating Risk (OhR) according to respective stage of cargo work in a harbor. In addition, we constructed a forecast system to provide heat stress information. Methods: Thermophysiological indices in this study were calculated using the MENEX model (i.e. the human heat balance model), which used as inputs the meteorological parameters, clothing insulation, and metabolic rate for each stage of cargo work in the harbor of Masan over the course of seven days, including a four-day heat wave. The forecast heat stress information constructed for Masan harbor was based on meteorological data supported by the Dong-Nae Forecast from the KMA (Korea Metrological Administration) and other input parameters. Results: According to higher metabolic rate, thermophysiological indices showed a critical level. In particular, PST was evaluated as reaching the 'Very hot' or 'Hot' level during all seven days, despite the heat occurring over only four. It is important in a regard to consider the work environment conditions (i.e. labor intensity and clothing in harbor). On a webpage, the forecast thermophysiological indices show as infographics to be easily understand. This webpage is comprised of indices for both current conditions and the forecast, with brief guidance. Conclusion: Thermophysiological indices show the risk level to health during a heat wave period. Heat stress information could help to protect the health of harbor workers. Further, this study could extend the applicability of these indices to a variety of outdoor workers in consideration of work environments.

A Study on Experiments the Environmental Conditions and the Adaptation of the Human Body in the Vinyl House (Vinyl House 내의 환경조건과 인체적응에 관한 실험연구)

  • Shim, Bu-Ja
    • Journal of Preventive Medicine and Public Health
    • /
    • v.27 no.1 s.45
    • /
    • pp.59-73
    • /
    • 1994
  • The purpose of this study is to experiments the environmental conditions and the adaption of the human body in the vinyl house. The study was done in spring and winter and experimental clothes were used working clothes in the vinyl house. The results are as follows. 1. Environmental Conditions In the spring season, the indoor air temperature was $27.4{\pm}3.7^{\circ}C$ and the outdoor air temperature was $14.4{\pm}2.7^{\circ}C$. In the winter season, the indoor air temperature was $18.3{\pm}4.8^{\circ}C$ and the outdoor air temperature was $7.6{\pm}2.5^{\circ}C$ on the average. 2. Skin Temperature In the spring season, the mean skin temperatures indoor and outdoor were $33.81{\pm}0.7^{\circ}C\;and\;31.57{\pm}0.8^{\circ}C$ respectively, a difference of $2.24^{\circ}C$. In the winter season, they were $31.95{\pm}1.93^{\circ}C\;and\;29.86{\pm}0.55^{\circ}C$ respectively, a difference of $2.09^{\circ}C$. 3. Clothing Climate In the spring season, the temperature and humidity in the inner layer of clothing were $34.77{\pm}0.80^{\circ}C\;and\;70.75{\pm}1.65%$ indoor, $31.9{\pm}0.52^{\circ}C\;and\;51.9{\pm}3.70%$ outdoor respectively. In the winter season, those were $32.52{\pm}1.04^{\circ}C\;and\;64.65{\pm}3.68%$ indoor, $30.27{\pm}0.96^{\circ}C\;and\;45.07{\pm}2.68%$ outdoor respectively. 4. Physiological Factors Body temperature increased slightly and the pulse rate also rises, but blood pressure decreased a little with the rise of environmental temperature both in the spring and winter seasons. 5. Psychological Factors Thermal sensation in the spring season was expressed as 'slightly warm' or 'warm' indoor and as 'neutral' in the open air, while in the winter it was expressed as 'neutral' or 'slightly warm' outdoor the house and as 'cold' in the open air. Comfort sensation was characterized as 'uncomfortable' or 'slightly uncomfortable' indoor both in the spring and winter seasons, but in the open air it was characterized as 'comfortable' in the spring and as 'slightly uncomfortable' in the winter.

  • PDF

A Study of the Urban Tree Canopy Mean Radiant Temperature Mitigation Estimation (도시림의 여름철 평균복사온도 저감 추정 연구)

  • An, Seung Man;Son, Hak-gi;Lee, Kyoo-Seock;Yi, Chaeyeon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.44 no.1
    • /
    • pp.93-106
    • /
    • 2016
  • This study aimed to estimate and evaluate the thermal mitigation of the urban tree canopy on the summer outdoor environment by quantitative use of mean radiant temperature. This study applied the SOLWEIG model based $T_{mrt}$ comparison method by using both (1) urban tree canopy presence examples and (2) urban tree canopy absence examples as constructed from airborne LiDAR system based three-dimensional point cloud data. As a result, it was found that an urban tree canopy can provide a decrease in the entire domain averaged daily mean $T_{mrt}$ about $5^{\circ}C$ and that the difference can increase up to $33^{\circ}C$ depending both on sun position and site conditions. These results will enhance urban microclimate studies such as indices (e.g., wind speed, humidity, air temperature) and biometeorology (e.g., perceived temperature) and will be used to support forest based public green policy development.

The Gradient Variation of Thermal Environments on the Park Woodland Edge in Summer - A Study of Hadongsongrim and Hamyangsangrim - (여름철 공원 수림지 가장자리의 온열환경 기울기 변화 - 하동송림과 함양상림을 대상으로 -)

  • Ryu, Nam-Hyong;Lee, Chun-Seok
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.6
    • /
    • pp.73-85
    • /
    • 2015
  • This study investigated the extent and magnitude of the woodland edge effects on users' thermal environments according to distance from woodland border. A series of experiments to measure air temperature, relative humidity, wind velocity, MRT and UTCI were conducted over six days between July 31 and August 5, 2015, which corresponded with extremely hot weather, at the south-facing edge of Hadongsongrim(pure Pinus densiflora stands, tree age: $100{\pm}33yr$, tree height: $12.8{\pm}2.7m$, canopy closure: 75%, N $35^{\circ}03^{\prime}34.7^{{\prime}{\prime}}$, E $127^{\circ}44^{\prime}43.3^{{\prime}{\prime}}$, elevation 7~10m) and east-facing edge of Hamyangsangrim (Quercus serrata-Carpinus tschonoskii community, tree age: 102~125yr/58~123yr, tree height: tree layer $18.6{\pm}2.3m/subtree$ layer $5.9{\pm}3.2m/shrub$ layer $0.5{\pm}0.5m$, herbaceous layer coverage ratio 60%, canopy closure: 96%, N $35^{\circ}31^{\prime}28.1^{{\prime}{\prime}}$, E $127^{\circ}43^{\prime}09.8^{{\prime}{\prime}}$, elevation 170~180m) in rural villages of Hadong and Hamyang, Korea. The minus result value of depth means woodland's outside. The depth of edge influence(DEI) on the maximum air temperature, minimum relative humidity and wind speed at maximum air temperature time during the daytime(10:00~17:00) were detected to be $12.7{\pm}4.9$, $15.8{\pm}9.8$ and $23.8{\pm}26.2m$, respectively, in the mature evergreen conifer woodland of Hadongsongrim. These were detected to be $3.7{\pm}2.2$, $4.9{\pm}4.4$ and $2.6{\pm}7.8m$, respectively, in the deciduous broadleaf woodland of Hamyansangrim. The DEI on the maximum 10 minutes average MRT, UTCI from the three-dimensional environment absorbed by the human-biometeorological reference person during the daytime(10:00~17:00) were detected to be $7.1{\pm}1.7$ and $4.3{\pm}4.6m$, respectively, in the relatively sparse woodland of Hadongsongrim. These were detected to be $5.8{\pm}4.9$ and $3.5{\pm}4.1m$, respectively, in the dense and closed woodland of Hadongsongrim. Edge effects on the thermal environments of air temperature, relative humidity, wind speed, MRT and UTCI in the sparse woodland of Hadongsongrim were less pronounced than those recorded in densed and closed woodland of Hamyansangrim. The gradient variation was less steep for maximum 10 minutes average UTCI with at least $4.3{\pm}4.6m$(Hadongsongrim) and $3.5{\pm}4.1m$(Hamyansangrim) being required to stabilize the UTCI at mature woodlands. Therefore it is suggested that the woodlands buffer widths based on the UTCI values should be 3.5~7.6 m(Hamyansangrim) and 4.3~8.9(Hadongsongrim) m on each side of mature woodlands for users' thermal comfort environments. The woodland edge structure should be multi-layered canopies and closed edge for the buffer effect of woodland edge on woodland users' thermal comfort.

Physiological responses and subjective sensation of human body wearing Cool Mapsi in air-conditioning environment (냉방환경에서 쿨맵시 착용에 따른 생리적 반응과 주관적 감각)

  • Kang, Noo-Ri;Na, Young-Joo
    • Science of Emotion and Sensibility
    • /
    • v.13 no.2
    • /
    • pp.359-370
    • /
    • 2010
  • The purpose of this study is to test the performance of the recommended summer dressing for office man through the analysis of skin temperature changes by air-conditioning temperature. We tested two clothing combinations; formal wear with necktie and casual shirts without necktie as for Cool mapsi. 4 male subjects sat to stabilize for thirty minutes after entering artificial-climate chamber with both temperature of $25^{\circ}C$, $27^{\circ}C$ and $50{\pm}10%$ R.H. And during 60 minute experiments of simulating office work, the subjective feelings including thermal, humidity and comfort sensation, skin temperature, clothing humidity and sweat amount were measured at the equal intervals. The result is that formal wear of $25^{\circ}C$ and Cool mapsi of $27^{\circ}C$ show good values such as low skin temperature, low clothing humidity and neutral thermal sensation. And Cool mapsi of $25^{\circ}C$ shows the risk of low rectal temperature for long and static energy level of office work. Formal wear of $27^{\circ}C$ shows high values of mean skin temperature, clothing humidity and thermal sensation. Second experiment was to find the ambient temperature when the subject wearing formal wear shows the skin temperature corresponding to which he shows on Cool mapsi of $27^{\circ}C$. The air-conditioning temperature on wearing formal wear has to be $2^{\circ}C$ lower to produce the corresponding skin temperature to which shows on wearing Cool mapsi of $27^{\circ}C$. Therefore it is possible to increase room temperature to $27^{\circ}C$, when wear Cool mapsi for summer office, for skin temperature and thermal sensation are produced the same.

  • PDF

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2009 (설비공학 분야의 최근 연구 동향 : 2009년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Lee, Dae-Young;Kim, Seo Young;Choi, Jong-Min;Baik, Yong-Kyu;Kwon, Young-Chul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.7
    • /
    • pp.492-507
    • /
    • 2010
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2009. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends of thermal and fluid engineering have been surveyed as groups of general thermal and fluid flow, fluid machinery and piping, and new and renewable energy. Various topics were covered in the field of general thermal and fluid flow such as an expander, a capillary tube, the flow of micro-channel water blocks, the friction and anti-wear characteristics of nano oils with mixtures of refrigerant oils, etc. Research issues mainly focused on the design of micro-pumps and fans, the heat resistance reliability of axial smoke exhaust fans, and hood systems in the field of fluid machinery and piping. Studies on ground water sources were executed concerning two well type geothermal heat pumps and multi-heat pumps in the field of new and renewable energy. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics and industrial heat exchangers. Researches on heat transfer characteristics included the heat transfer in thermoelectric cooling systems, refrigerants, evaporators, dryers, desiccant rotors. In the area of industrial heat exchangers, researches on high temperature ceramic heat exchangers, plate heat exchangers, frosting on fins of heat exchangers were performed. (3) In the field of refrigeration, papers were presented on alternative refrigerants, system improvements, and the utilization of various energy sources. Refrigeration systems with alternative refrigerants such as hydrocarbons, mixed refrigerants, and $CO_2$ were studied. Efforts to improve the performance of refrigeration systems were made applying various ideas of suction line heat exchangers, subcooling bypass lines and gas injection systems. Studies on heat pump systems using unutilized energy sources such as river water, underground water, and waste heat were also reported. (4) Research trend in the field of mechanical building facilities has been found to be mainly focused on field applications rather than performance improvements. In the area of cogeneration systems, papers on energy and economic analysis, LCC analysis and cost estimating were reported. Studies on ventilation and heat recovery systems introduced the effect on fire and smoke control, and energy reduction. Papers on district cooling and heating systems dealt with design capacity evaluation, application plan and field application. Also, the maintenance and management of building service equipments were presented for HVAC systems. (5) In the field of architectural environment, various studies were carried to improve indoor air quality and to analyze the heat load characteristics of buildings by energy simulation. These studies helped to understand the physics related to building load characteristics and to improve the quality of architectural environment where human beings reside in.

Research on Actual Usage and Satisfaction of ROKAF Fighter Pilot's Flight Duty Uniform (공군 전투조종사 비행복 착용특성 및 만족도 조사)

  • Lee, Ah Lam;Nam, Yun Ja;Hong, Yu Hwa;Im, Sojung;Lim, Chae Keun
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.40 no.4
    • /
    • pp.669-684
    • /
    • 2016
  • This study investigates Korean fighter pilot's usage and satisfaction of a flight duty uniform (FDU). The survey was conducted from October 2014 to March 2015 using Focus Group Interview (FGI) and questionnaires. FGI collected qualitative data about duty and requirements; subsequently, surveys were performed to collect quantitative data about wearing conditions and satisfaction with FDU. The results of the FGI and the questionnaire were as follows. Type of pilot duty was divided into two parts, flight duty and ground duty. It is important to consider duties as well as factors related to survival when developing FDU. According to anthropometric data and wearing size, the basic size for apparel grading should be changed from actual size, 'M95XL' to 'M100L'. It is also necessary to improve the whole sizing system. Further studies about body form changes in pilot's movement are needed to improve mobility because the respondents perceived some restrictions at several body parts in movement with the coverall uniform. Summer FDU had a low satisfaction level in vent hole function and appearance. Furthermore, protection problems in the vent hole were also an issue. Making a seasonal classification of FDU fabric will be more effective than a vent hole to increase a pilot's thermal satisfaction. Respondents had a passive stance towards FDU reform (including pocket change); therefore, a new FDU design strategy should concentrate on improving current FDU functions like mobility (or comfort) rather than dramatic changes. Pilots complained about the quality stability of FDU; therefore, quality control by military administration as well as concrete and clear design instructions by the developer should be attained together. The results obtained in this study are expected to be used as an important basis for the further development of FDU.