• Title/Summary/Keyword: Human skin fibroblasts

Search Result 231, Processing Time 0.03 seconds

Effects of human collagen α-1 type I-derived proteins on collagen synthesis and elastin production in human dermal fibroblasts

  • Hwang, Su Jin;Kim, Su Hwan;Seo, Woo-Young;Jeong, Yelin;Shin, Min Cheol;Ryu, Dongryeol;Lee, Sang Bae;Choi, Young Jin;Kim, KyeongJin
    • BMB Reports
    • /
    • v.54 no.6
    • /
    • pp.329-334
    • /
    • 2021
  • Collagen type I is the most abundant form of collagen in human tissues, and is composed of two identical α-1 type I chains and an α-2 type I chain organized in a triple helical structure. A previous study has shown that human collagen α-2 type I (hCOL1A2) promotes collagen synthesis, wound healing, and elastin production in normal human dermal fibroblasts (HDFs). However, the biological effects of human collagen α-1 type I (hCOL1A1) on various skin properties have not been investigated. Here, we isolate and identify the hCOL1A1-collagen effective domain (CED) which promotes collagen type I synthesis. Recombinant hCOL1A1-CED effectively induces cell proliferation and collagen biosynthesis in HDFs, as well as increased cell migration and elastin production. Based on these results, hCOL1A1-CED may be explored further for its potential use as a preventative agent against skin aging.

The Effect of Glycolic Acid on Human Dermal Fibroblasts: Increased Collagen Synthesis and Inhibition of MMP-2/9

  • Park, Ki-Sook;Kim, Soo-Kyoum;Lim, Sae-Hwan;Kim, Yun-Young;Park, Young-Ju;Lee, Seung-Soo;Lee, Su-Hvun;Chang, Tae-Hyun;Son, Youna-Sook
    • Proceedings of the SCSK Conference
    • /
    • 2003.09b
    • /
    • pp.519-523
    • /
    • 2003
  • Alpha hydroxy acid (AHA) includes a group of organic acids found in natural foods such as sugarcane (glycolic acid), milk (lactic acid), apples (malic acid) and oranges (citric acid). Earlier studies demonstrated the effect of AHAs on the skin by diminishing the adhesiveness of the corneal layer and increasing the viable epidermal thickness. Recent data suggest that AHAs have some effects on the dermal component of skin and even affect the aging process of the skin. A previous study revealed increased collagen production by treatment with glycolic acid among AHAs in vitro. However, the mechanism of the regulation of collagen production by glycolic acid was unclear. In present study, we tried to demonstrate the effect of glycolic acid on human dermal fibroblasts and to unveil the mechanism of regulation of collagen production by glycolic acid in human dermal fibroblasts: proliferation of fibroblasts and collagen synthesis and degradation by collagenases in fibroblasts. Our results suggested that glycolic acid had no effect on proliferation and cytotoxicity of adult human dermal fibroblasts. However, glycolic acid not only induced the increase of the collagen synthesis in human dermal fibroblasts at lower concentration than 0.1 % but also inhibited MMP-2 activity of human dermal fibroblast in the range between 0.01 and 0.4% and MMP-9 activity of human dermal fibroblast in the range between 0.06 and 0.09%. In summary, our results suggest that glycolic acid may increase wrinkle reduction partially by both increase in collagen synthesis and decrease in collagen degradation.

  • PDF

COMPARISON OF THE BIOMECHANICAL AND BIOSYNTHETIC BEHAVIOR OF NORMAL HUMAN FIBROBLASTS AND FIBROBLASTS ISSUE FROM A FOREHEAD WRINKLE

  • Jouandeaud, M.;Viennet, C.;Chadebec, P.;Bordes, S.;Closs, B.;Humbert, P.
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.192-202
    • /
    • 2003
  • The wrinkles correspond to the most obvious expression of skin ageing and are manifested by changes on the organization and dermal structure. In the extracellular matrix, decreased quantities of collagens and glycosaminoglycans as well as a deterioration of the fibrillary network is noted, result in a reduction of dermal thickness. In addition, the activity of the collagenases increases in contrast to the synthesis of collagen fibers. Nor are cells spared during the aging process. We thus studied and compared the contractile capacity as well as the synthesis capacity of normal human fibroblasts and human fibroblasts obtained from biopsies of forehead wrinkles. The capacity of the fibroblasts to be adhered to the collagen network and to maintain a three-dimensional structure of dermis was studied on a model of equivalent dermis. The metabolic activity was studied by evaluating the capacities of synthesis of collagen I, main component of dermis. Human fibroblasts resulting from the forehead wrinkle contract less the gel of collagen than the normal human fibroblasts and present an activity of biosynthesis of collagen I less important than normal human fibroblasts. These results show that fibroblasts with aging present a deceleration of their metabolic activity and lose their capacity of adhesion to collagen fibers thus limiting the possibility of organizing the dermal tissue. We investigated the potential of an active ingredient able to compensate for the reduction of the metabolic activity and to restore the contractile capacity of fibroblasts obtained from forehead wrinkles. This effect was compared with a reference molecule: the vitamin C.

  • PDF

Protection of Skin Fibroblasts from Infrared-A-Induced Photo-Damage Using Ginsenoside Rg3(S)-Incorporated Soybean Lecithin Liposomes

  • Won Ho Jung;Jihyeon Song;Gayeon You;Jun Hyuk Lee;Sin Won Lee;Joong-Hoon Ahn;Hyejung Mok
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.135-141
    • /
    • 2023
  • Protection of skin cells from chronic infrared-A (IRA) irradiation is crucial for anti-photoaging of the skin. In this study, we investigated the protective activity of Rg3(S) and Rg3(S)-incorporated anionic soybean lecithin liposomes (Rg3/Lipo) with a size of approximately 150 nm against IRA-induced photodamage in human fibroblasts. The formulated Rg3/Lipo showed increased solubility in aqueous solution up to a concentration of 200 ㎍/ml, compared to free Rg3(S). In addition, Rg3/Lipo exhibited superior colloidal stability in aqueous solutions and biocompatibility for normal human dermal fibroblasts (NHDFs). After repeated IRA irradiation on NHDFs, elevated levels of cellular and mitochondrial reactive oxygen species (ROS) were greatly reduced by Rg3(S) and Rg3/Lipo. In addition, cells treated with Rg3/Lipo exhibited noticeably reduced apoptotic signals following IRA irradiation compared to untreated cells. Thus, considering aqueous solubility and cellular responses, Rg3/Lipo could serve as a promising infrared protector for healthy aging of skin cells.

Ethacrynic Acid and Citral Suppressed the All Trans Retinoid-Induced Monocyte Chemoattractant Protein-1 Production in Human Dermal Fibroblasts

  • Kim, Kwang-Mi;Noh, Min-Soo;Kim, Soo-Hyun;Park, Mi-Kyung;Lee, Hye-Ja;Kim, Soo-Youl;Lee, Chang-Hoon
    • Biomolecules & Therapeutics
    • /
    • v.18 no.1
    • /
    • pp.71-76
    • /
    • 2010
  • Skin irritation caused by retinol and retinoic acid results in mild erythema called as retinoid dermatitis. To develop compounds modulating the retinoid dermatitis, we tried to establish the screening method for retinoid dermatitis. At first we examined the inflammatory cytokine profile in neonatal human dermal fibroblasts which are known to be one of main site of retinoid action. As a result, interleukin-8 (IL-8) and monocytes chemoattractant protein-1 (MCP-1) were significantly produced by all trans retinoic acid (ATRA) and all trans retinol (ATROL) in dermal fibroblasts. Especially the production of MCP-1 was more than that of IL-8. The production of MCP-1 by retinoid was dose-dependently increased, continuing up to 24 hrs. After then using ethacrynic acid (ECA) known to reduce mouse ear edema induced by ATRA, we checked whether ECA suppressed the production of MCP-1. As a result, ECA effectively suppressed the production of MCP-1 in the ATRA- or ATROL-treated-fibroblasts. These results suggested that screening method effectively reflects the in vivo anti-inflammatory activity of ECA. It was reported that citral inhibited the enzyme involved in the conversion of ATROL to ATRA. We showed that citral suppressed the production of MCP-1 in ATROL-treated fibroblasts. We expect these finding might be helpful to find useful compounds modulating the side effects of retinoid or retinoid dermatitis.

Comparative Analysis on Antioxidant Activity in Various Human Skin Fibroblasts and Mesenchymal Stem Cells (사람의 피부 섬유아세포 및 중간엽 줄기세포에서 항산화 활성의 반응에 대한 비교 분석)

  • Kong, Ji-Weon;Park, Ryeok;Park, Joon-Woo;Lee, Joo-Yeong;Choi, Yeon-Joo;Moon, Sun-Ha;Kim, Hyeon-Ji;Jeon, Byeong-Gyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.394-406
    • /
    • 2019
  • The cellular senescence may be due to damage by the reactive oxygen species (ROS). This study has compared the antioxidant activity in the human cell lines of various origins, including 10S and 50S-derived normal skin fibroblasts, and 10S bone marrow, dental tissue and adipose-derived adult stem cells. After being exposed to $H_2O_2$, half inhibitory concentration ($IC_{50}$) values by cytotoxicity assay was significantly (P<0.05) lower in 50S-derived skin fibroblasts, than in 10S-derived skin fibroblasts and various adult stem cell lines. The cell population doubling time (PDT) and the cell frequency with high senescence associated-${\beta}$-galactose activity were remarkably increased in 50S-derived fibroblasts exposed to 50 ppm $H_2O_2$ for 7 days, than those of 10S-derived fibroblasts and various adult stem cell lines. Further, the expression level of antioxidant-related genes, glutathione peroxidase (GPX) and catalase (CAT), was investigated in 10S and 50S-derived skin fibroblasts, and 10S-derived various adult stem cells by reverse transcription polymerase chain reaction (RT-PCR). The expression level of GPX was higher in most of cell lines, compared to CAT, and a significantly (P<0.05) higher expression level of GPX was observed in 10S-derived skin fibroblasts and adult stem cell lines, compared to 50S-derived skin fibroblasts. We concluded that old-aged skin fibroblasts seemed to be less resistant against ROS than young-aged skin fibroblasts and adult stem cells.

Suppression of Cellular Senescence by Cordycepin in Replicative Aged Human Dermal Fibroblasts (Cordycepin에 의한 피부 섬유아세포 세포노쇠화 개선효과)

  • Kim, Hyo Jin;Lee, So Young;Kim, Do Hyung;Jin, Mu Hyun;Roh, Seok-Seon;Kim, Hyung-Min;Choi, In-Hwa;Lee, Myeong Soo;Lee, Sang Hwa
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.2
    • /
    • pp.135-141
    • /
    • 2015
  • Cell senescence can be identified by cellular changes that occur as a result of intrinsic aging and/or diseases. In case of skin cells, aging and cell senescence caused by external factors results in cessation of cell proliferation and cellular malfunction, which, in turn, accelerates skin aging. In this study, inhibition of cell senescence and enhancement of cell function were studied using cordycepin to evaluate the potential for skin anti-aging agent. By comparing with the number of senescence associated with ${\beta}$-galactosidase (SA-${\beta}$-gal) positive cells in young and replicative aged human fibroblasts, it was found that replicative aged cells showed higher expression of ${\beta}$-galactosidase. Treatment of cordycepin - known as an anti-oxidative and anti-inflammatory agent - reduced ${\beta}$-galactosidase expression in senescent cells and enhanced cell survival in serum-free culture condition. Cordycepin also showed superb inhibition of ROS, which is another indicator of cell senescence. The results of this study proved the anti-aging effect of cordycepin on human fibroblasts and also proposed a possibility of its use as an anti-aging cosmetic ingredient.

Cytokines Regulate the Expression of the Thymus and Activation-Regulated Chemokine (TARC; CCL17) in Human Skin Fibroblast Cells

  • Lee, Ji-Sook;Kim, In-Sik;Kim, Dong-Hee;Yun, Chi-Young
    • Animal cells and systems
    • /
    • v.10 no.1
    • /
    • pp.15-20
    • /
    • 2006
  • Allergic inflammation is thought to be a Th2 cell-dominant immune response during which tissue-resident fibroblasts produce chemokines which contribute to the recruitment of migratory leukocytes to sites of tissue injury. Thymus and activation-regulated chemokine (TARC; CCL17) is a potent member of the CC chemokine family and a selective chemoattractant for Th2 cells. In order to study the regulatory profiles of TARC production by $TNF-{\alpha}$, $IFN-{\gamma}$, and Il-4 in human normal skin fibroblast, CCD-986sk cell line was used. The expression of TARC protein was measured using ELISA, and mRNA level was detected by RT-PCR. The combination of $TNF-{\alpha}$ and IL-4 induced a time-and dose-dependent synergistic increase in the expression of TARC at both protein and mRNA levels in the cultured human skin fibroblasts. Exposure of the cells to single cytokine had no effect on TARC expression. The high concentration (100 ng/ml) and long incubation time (72 h) of $IFN-{\gamma}$ further enhanced the TARC production induced by $TNF-{\alpha}$/lL-4 in the skin fibroblast. This synergistic effect of Th1 and Th2 type cytokines on TARC production by skin fibroblasts may contribute to the inflammatory cell infiltration and tissue damage with allergic inflammation.

Effect of Campsis grandiflora on Antioxidative Activity in UVB-irradiated Human Dermal Fibroblasts (사람 섬유아세포에서 UVB 조사에 대한 능소화 추출물의 항산화 효과)

  • Kim, Jin-Hwa;Lee, Bum-Chun;Zhang, Yong-He;Pyo, Hyeong-Bae
    • YAKHAK HOEJI
    • /
    • v.49 no.2
    • /
    • pp.174-179
    • /
    • 2005
  • The human skin is constantly exposed to environmental irritants such as ultraviolet, smoke, chemicals. Free radicals and reactive oxygen species (ROS) caused by these environmen tal facts play critical roles in cellular damage. These irritants are in themselves damaging to the skin structure but they also participate the immensely complex inflammatory reaction. The purpose of this study was to investigate the skin cell protective effect of Campsis grandiflora extract on the UVB-irradiated human dermal fibroblasts (HDFs). We tested free radical and superoxide scavenging effect in vitro. C. grandiflora extracts had potent radical scavenging effect by 82% at $100{\mu}g/ml$, respectively. For testing intracellular ROS scavenging activity the cultured HDFs were analyzed by increase in DCF fluorescence upon exposure to UVB 20 $MJ/cm^2$ after treatment of C.grandiflora extracts. The results showed that oxidation of CM-DCFDA was inhibited by C.grandiflora extracts effectively and C.grandiflora extracts has a potent free radical scavenging activity in UVB- irradiated HDFs. In ROS imaging using confocal microscope we visualized DCF fluorescence in HDFs directly. In conclusion, our results suggest that C.grandiflora can be effectively used for the prevention of UV-induced adverse skin reactions such as radical production, and skin cell damage.

Human Fibroblast-derived Multi-peptide Factors and the Use of Energy-delivering Devices in Asian Patients

  • Suh, Sang Bum;Ahn, Keun Jae;Chung, Hye Jin;Suh, Ji Youn;Cho, Sung Bin
    • Medical Lasers
    • /
    • v.9 no.1
    • /
    • pp.12-24
    • /
    • 2020
  • Human fibroblast-derived multi-peptide factors (MPFs) have been used during treatments with energy-delivering modalities to enhance energy-induced tissue reactions. Human fibroblast-derived MPFs, which include a range of growth factors and chemoattractive factors, activate and recruit fibroblasts and endothelial cells, as well as promote extracellular matrix deposition, all of which are crucial to wound repair. Interestingly, fibroblasts from different species or anatomical sites exhibit distinct transcriptional properties with high heterogeneity. In addition, the patterns of MPF secretion can differ under a range of experimental conditions. Therefore, the use of allogeneic fibroblasts and proper cultivation thereof are necessary to obtain MPFs that can enhance the epithelial-mesenchymal interactions during wound repair. Moreover, energy-delivering devices should be selected according to evidence demonstrating their therapeutic efficacy and safety on a pathological skin condition and the major target skin layers. This paper reviewed the histologic patterns of post-treatment tissue reactions elicited by several energy sources, including non-ablative and ablative fractional lasers, intense focused ultrasound, non-invasive and invasive radiofrequency, picosecond-domain lasers, and argon and nitrogen plasma. The possible role of the immediate application of human fibroblast-derived MPFs during wound repair was proposed.