• Title/Summary/Keyword: Human robot

Search Result 1,375, Processing Time 0.028 seconds

Safe Industrial Manipulator Based on a Counterbalancing Mechanism with Adaptation to the Posture Change of a Robot Base Plane (로봇 설치면 자세 변화에 대응 가능한 자중 보상 기반 안전 매니퓰레이터)

  • Do, Hyun Min;Kim, Hwi-Su;Kim, Doo Hyeong;Choi, Tae-Yong;Park, Dong Il;Son, Youngsu
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.6
    • /
    • pp.511-516
    • /
    • 2016
  • Guaranteeing the safety of human workers around robots has become an important issue with the increasing demand for human-robot collaboration in industrial production lines. This study proposes a robot manipulator equipped with a counterbalancing mechanism that reduces the power of actuators required to drive the robot, thus keeping a human worker safer in a human-robot collaborative environment. A counterbalancing torque that exactly cancels out the gravitational torque in the proposed mechanism is generated by restoring the force of a spring in the counterbalancing mechanism. A prototype design and experimental results are presented to verify the effectiveness of the proposed method.

Human Robot Interaction via Wearable Robot

  • Kobayashi, Hiroshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.49.5-49
    • /
    • 2002
  • $\textbullet$ Developing "muscle shit" providing muscular support $\textbullet$ Based on a new concept: wearable robot $\textbullet$ Be applicable directly to human $\textbullet$ McKibben artificial muscles are sewn into a garment

  • PDF

Game Platform and System that Synchronize Actual Humanoid Robot with Virtual 3D Character Robot (가상의 3D와 실제 로봇이 동기화하는 시스템 및 플랫폼)

  • Park, Chang-Hyun;Lee, Chang-Jo
    • Journal of Korea Entertainment Industry Association
    • /
    • v.8 no.2
    • /
    • pp.283-297
    • /
    • 2014
  • The future of human life is expected to be innovative by increasing social, economic, political and personal, including all areas of life across the multi-disciplinary skills. Particularly, in the field of robotics and next-generation games with robots, by multidisciplinary contributions and interaction, convergence between technology is expected to accelerate more and more. The purpose of this study is that by new interface model beyond the technical limitations of the "human-robot interface technology," until now and time and spatial constraints and through fusion of various modalities which existing human-robot interface technologies can't have, the research of more reliable and easy free "human-robot interface technology". This is the research of robot game system which develop and utilizing real time synchronization engine linking between biped humanoid robot and the behavior of the position value of mobile device screen's 3D content (contents), robot (virtual robots), the wireless protocol for sending and receiving (Protocol) mutual information and development of a teaching program of "Direct Teaching & Play" by the study for effective teaching.

Geometric Formulation of Rectangle Based Relative Localization of Mobile Robot (이동 로봇의 상대적 위치 추정을 위한 직사각형 기반의 기하학적 방법)

  • Lee, Joo-Haeng;Lee, Jaeyeon;Lee, Ahyun;Kim, Jaehong
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.1
    • /
    • pp.9-18
    • /
    • 2016
  • A rectangle-based relative localization method is proposed for a mobile robot based on a novel geometric formulation. In an artificial environment where a mobile robot navigates, rectangular shapes are ubiquitous. When a scene rectangle is captured using a camera attached to a mobile robot, localization can be performed and described in the relative coordinates of the scene rectangle. Especially, our method works with a single image for a scene rectangle whose aspect ratio is not known. Moreover, a camera calibration is unnecessary with an assumption of the pinhole camera model. The proposed method is largely based on the theory of coupled line cameras (CLC), which provides a basis for efficient computation with analytic solutions and intuitive geometric interpretation. We introduce the fundamentals of CLC and describe the proposed method with some experimental results in simulation environment.

Is Robot Alive? : Young Children's Perception of a Teacher Assistant Robot in a Classroom (로봇은 살아 있을까? : 우리 반 교사보조로봇에 대한 유아의 인식)

  • Hyun, Eun-Ja;Son, Soo-Ryun
    • Korean Journal of Child Studies
    • /
    • v.32 no.4
    • /
    • pp.1-14
    • /
    • 2011
  • The purpose of this study was to investigate young children's perceptions of a teacher assistant robot, IrobiQ. in a kindergarten classroom. The subjects of this study were 23 6-year-olds attending to G kindergarten located in E city, Korea, where the teacher assistant robot had been in operation since Oct. 2008. Each child responded to questions assessing the child's perceptions of IrobiQ's identity regarding four domains : it's biological, intellectual, emotional and social identity. Some questions asked the child to affirm or deny some characteristics pertaining to the robot and the other questions asked the reasons for the answer given. The results indicated that while majority of children considered an IrobiQ not as a biological entity, but as a machine, they thought it could have an emotion and be their playmate. The implications of these results are two folds : firstly, they force us to reconsider the traditional ontological categories regarding intelligent service robots to understand human-robot interaction and secondly, they open up an ecological perspective on the design of teacher assistant robots for use with young children in early childhood education settings.

Cleaning Robot Algorithm through Human-Robot Interaction (사람과 로봇의 상호작용을 통한 청소 로봇 알고리즘)

  • Kim, Seung-Yong;Kim, Tae-Hyung
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.5
    • /
    • pp.297-305
    • /
    • 2008
  • We present a cleaning robot algorithm that can be implemented on low-cost robot architecture while the cleaning performance far exceeds the conventional random style cleaning through human-robot interaction. We clarify the advantages and disadvantages of the two notable cleaning robot styles: the random and the mapping styles, and show the possibility how we can achieve the performance of the complicated mapping style under the random style-like robot architecture using the idea of human-aided cleaning algorithm. Experimental results are presented to show the performance.

Implementation of a Refusable Human-Robot Interaction Task with Humanoid Robot by Connecting Soar and ROS (Soar (State Operator and Result)와 ROS 연계를 통해 거절가능 HRI 태스크의 휴머노이드로봇 구현)

  • Dang, Chien Van;Tran, Tin Trung;Pham, Trung Xuan;Gil, Ki-Jong;Shin, Yong-Bin;Kim, Jong-Wook
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.1
    • /
    • pp.55-64
    • /
    • 2017
  • This paper proposes combination of a cognitive agent architecture named Soar (State, operator, and result) and ROS (Robot Operating System), which can be a basic framework for a robot agent to interact and cope with its environment more intelligently and appropriately. The proposed Soar-ROS human-robot interaction (HRI) agent understands a set of human's commands by voice recognition and chooses to properly react to the command according to the symbol detected by image recognition, implemented on a humanoid robot. The robotic agent is allowed to refuse to follow an inappropriate command like "go" after it has seen the symbol 'X' which represents that an abnormal or immoral situation has occurred. This simple but meaningful HRI task is successfully experimented on the proposed Soar-ROS platform with a small humanoid robot, which implies that extending the present hybrid platform to artificial moral agent is possible.