• Title/Summary/Keyword: Human periodontal ligament cells

Search Result 157, Processing Time 0.024 seconds

Neurogenic differentiation of human dental stem cells in vitro

  • Lee, Joo-Hee;Um, Soyoun;Song, In-Seok;Kim, Hui Young;Seo, Byoung Moo
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.40 no.4
    • /
    • pp.173-180
    • /
    • 2014
  • Objectives: The purpose of this study was to investigate the neurogenic differentiation of human dental pulp stem cells (DPSCs), periodontal ligament stem cells (PDLSCs), and stem cells from apical papilla (SCAP). Materials and Methods: After induction of neurogenic differentiation using commercial differentiation medium, expression levels of neural markers, microtubule-associated protein 2 (MAP2), class III ${\beta}$-tubulin, and glial fibrillary acidic protein (GFAP) were identified using reverse transcriptase polymerase chain reaction (PCR), real-time PCR, and immunocytochemistry. Results: The induced cells showed neuron-like morphologies, similar to axons, dendrites, and perikaryons, which are composed of neurons in DPSCs, PDLSCs, and SCAP. The mRNA levels of neuronal markers tended to increase in differentiated cells. The expression of MAP2 and ${\beta}$-tubulin III also increased at the protein level in differentiation groups, even though GFAP was not detected via immunocytochemistry. Conclusion: Human dental stem cells including DPSCs, PDLSCs, and SCAP may have neurogenic differentiation capability in vitro. The presented data support the use of human dental stem cells as a possible alternative source of stem cells for therapeutic utility in the treatment of neurological diseases.

Effects of enamel matrix derivatives on biologic activities of human periodontal fibloblasts to demineralized root surface (법랑기질유도체가 탈회 치근표면에서 치주인대섬유아세포의 생물학적 성상에 미치는 영향)

  • Lee, Kang-Woon;Kim, Tae-Il;Seol, Yang-Jo;Lee, Yong-Moo;Ku, Young;Rhyu, In-Chul;Chung, Chong-Pyung;Han, Soo-Boo
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.4
    • /
    • pp.679-690
    • /
    • 2008
  • Purpose: The aim of this study was to investigate the effects of EMD on demineralized root surface using human periodontal ligament cells and compare the effects of root conditioning materials(tetracycline(TCN), EDTA). Material and Methods: Dentin slices were prepared from the extracted teeth and demineralized with TCN and EDTA. Demineralized dentin slices were incubated at culture plate with 25, 50 and $100{\mu}g/ml$ concentration of EMD. Cell attachment, alkaline phosphatase activity test, protein synthesis assay and scanning electronic microscopic examination were done. Results: Cells were attached significantly higher in EMD treated group at 7 and 14 days. Cell numbers were significantly higher in EMD treated group. Alkaline phosphatase activity was significantly higher in EMD treated group at 7 and 14 days. Protein synthesis was significantly higher in EMD treated group at 7 and 14 days. Conclusion: Enamel matrix derivatives enhance the biologic activities of human periodontal ligament cells on demineralized root surface and its effects are dependent on the concentration of EMD.

The biologic effects of safflower(Carthamus tinctorius $Linn\acute{e}$) extract and Dipsasi Radix extract on periodontal ligament cells and osteoblastic cells (홍화 추출물이 치주인대세포, 조골세포 활성도에 미치는 영향)

  • Rhyu, In-Chul;Lee, Yong-Moo;Ku, Young;Bae, Ki-Whan;Chung, Chong-Pyoung
    • Journal of Periodontal and Implant Science
    • /
    • v.27 no.4
    • /
    • pp.867-882
    • /
    • 1997
  • Safflower(Carthamus tinctorius $Linn\acute{e}$ has been traditionally used for the treatment of blood stasis, and Dipsasi Radix has been used as a drug for fracture in Chinese medicine. The purpose of present study was to examine the biologic effects of safflower extract and Disasi radix extracts on the periodontal. ligament cells and osteoblastic cells and on the wound healing of rat calvarial defect. The ethanolic extract of safflower blossom, safflower seed and Dipsasi Radix(125, 250, and 500 ${\mu}g/ml$) were prepared as test group, and PDGF-BB(lOng/ml) and unsafonifiable fraction of Zea Mays L.(125, 250, and 500 ${\mu}g/ml$) were employed as positive control. The effects of each agents on the growth and survival, ALPase activity, expression of PDGF-BB receptor, chemotactic response of PDL cell and ATCC human osteosarcoma MG63 cells in vitro were examined. The tissue regenerative effect of each extracts was evaluated by histomorphometric measuring of newly formed bone on the 8mm defect in rat calvaria after oral administration of 3 different dosages groups : 0.02, 0.1 and 0.35g/kg, per day. It was also employed the same dosages of unsaponifiable fraction of Zea Mays L. as positive controls. Safflower blossom extract, safflower seed extract, and Dipsasi Radix extract stimulate the cellular activity of MG63 cells in concentration range of $125-500{\mu}g/ml$, and safflower bolssom extract and safflower seed extract stimulate also the cellular activity of periodontal ligament cells in concentration range of $250-500{\mu}g/ml$. In activity of ALPase, $250-500{\mu}g/ml$ of safflower blossom extracts showed significant stimulating effects on MG63 cells, and the same concentration range of safflower seed extracts showed significant effect on periodontal ligament cells. In the recovery on PDGF-BB receptor expression which was depressed by $IL-1{\beta}$, $125-250{\mu}g/ml$ of safflower blossom extracts and $250-500{\mu}g/ml$ of safflower seed extracts showed significant increasing effect on MG63 cells, and $500{\mu}g/ml$ of safflower blossom extract and $250-500{\mu}g/ml$ of safflower seed extracts showed significant effect on periodontal ligament cells. In chemotactic response, among all tested group, safflower seed extracts only were chemotactic to MG63 cells and periodontal ligament cells in concentration range of $125-500{\mu}g/ml$. Also in the view of bone regeneration in rat calvarial defect model, the only group that was orally administrated 0.35g/kg, day of safflower seed extract showed significant new bone formation. These results suggested that safflower extracts might have a potential possibilities as an useful drug for adjunct to treatment for regeneration of periodontal defect.

  • PDF

Cytotoxicity of newly developed pozzolan cement and other root-end filling materials on human periodontal ligament cell

  • Song, Minju;Yoon, Tae-Sun;Kim, Sue-Youn;Kim, Euiseong
    • Restorative Dentistry and Endodontics
    • /
    • v.39 no.1
    • /
    • pp.39-44
    • /
    • 2014
  • Objectives: The purpose of this study was to evaluate in vitro cytotoxicity of the pozzolan cement and other root-end filling materials using human periodontal ligament cell. Materials and Methods: Endocem (Maruchi), white ProRoot MTA (Dentsply), white Angelus MTA (Angelus), and Super EBA (Bosworth Co.) were tested after set completely in an incubator at $37^{\circ}C$ for 7 days, Endocem was tested in two ways: 1) immediately after mixing (fresh specimens) and 2) after setting completely like other experimental materials. The methods for assessment included light microscopic examination, cell counting and WST-1 assay on human periodontal ligament cell. Results: In the results of microscopic examination and cell counting, Super EBA showed significantly lower viable cell than any other groups (p < 0.05). As the results of WST-1 assay, compared with untreated control group, there was no significant cell viability of the Endocem group. However, the fresh mixed Endocem group had significantly less cell viability. The cells exposed to ProRoot MTA and Angelus MTA showed the highest viability, whereas the cells exposed to Super EBA displayed the lowest viability (p < 0.05). Conclusions: The cytotoxicity of the pozzolan cement (Endocem) was comparable with ProRoot MTA and Angelus MTA. Considering the difficult manipulation and long setting time of ProRoot MTA and Angelus MTA, Endocem can be used as the alternative of retrofilling material.

The Role of SDF-1𝛼-CXCR4/CXCR7 in Migration of Human Periodontal Ligament Stem Cells

  • Jialei Xu;Fan Yang;Shuhan Luo;Yuan Gao;Dingming Huang;Lan Zhang
    • International Journal of Stem Cells
    • /
    • v.16 no.2
    • /
    • pp.180-190
    • /
    • 2023
  • Background and Objectives: Regenerative endodontic procedures (REPs) are a research hotspot in the endodontic field. One of the biggest problems of REPs is that it is difficult to realize regeneration of pulp-dentin complex and functional reconstruction. The reason is still not clear. We hypothesize that the migration may be different in different dental stem cells. Periodontal ligament stem cells (PDLSCs) may migrate faster than stem cells of apical papilla (SCAPs), differentiating into cementum-like tissue, bone-like tissue and periodontal ligament-like tissue and, finally affecting the outcomes of REPs. Hence, this study aimed to explore the mechanism that regulates the migration of PDLSCs. Methods and Results: After isolating and culturing PDLSCs and SCAPs from human third molars, we compared the migration of PDLSCs and SCAPs. Then we investigated the role of SDF-1𝛼-CXCR4/CXCR7 axis in PDLSC migration. We further investigated the impact of Porphyromonas gingivalis (P. gingivalis) lipopolysaccharide (LPS) on PDLSC migration and the potential mechanism. PDLSCs showed better migration under both noninflammatory and inflammatory conditions than SCAPs. SDF-1𝛼 can promote the migration of PDLSCs by elevating the expression of CXCR4 and CXCR7, increasing the interaction between them, promoting expression of 𝛽-arrestin1 and activating the ERK signaling pathway. P. gingivalis LPS can promote the migration of PDLSCs toward SDF-1𝛼 through increasing the expression of CXCR4 via the NF-𝜅B signaling pathway, promoting the expression of 𝛽-arrestin1, and activating the ERK signaling pathway. Conclusions: This study helped elucidate the potential reason for the difficulty in forming pulp-dentin complex.

Inhibition of Human Periodontal Stem Cell Death Following the Antioxidant Action of Celecoxib (Celecoxib의 항산화 작용에 따른 성체 치주인대 줄기세포 사멸억제)

  • Kyung-Hee Lee
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.11 no.2
    • /
    • pp.169-179
    • /
    • 2023
  • Purpose : Although human periodontal ligament stem cells (hPDLSCs) are a supportive factor for tissue engineering, oxidative stress during cell culture and transplantation has been shown to affect stem cell viability and mortality, leading to failed regeneration. The aim of this study was to evaluate the antioxidant and protective effects against cell damage of celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, and the antioxidant signal of hPDLSCs in H2O2-induced oxidative stress. Methods : To induce oxidative stress in cultured hPDLSCs, H2O2 was used as an exogenous reactive oxygen species (ROS). Dose-dependent celecoxib (.1, 1, 10, or 100 µM) was administered after H2O2 treatment. WST-1 assay was used to assess cell damage and western blot was used to observe antioxidant activity of hPDLSCs in oxidative stress. Immunohistochemistry was performed for inverting the localization of the SOD and Nrf2 antibody. Results : We found that progressive cell death was induced in hPDLSCs by H2O2 treatment. However, low-dose celecoxib reduced H2O2-induced cellular damage and eventually enhanced the SOD activity and Nrf2 signal of hPDLSCs. Oxidative stress-induced morphological change in hPDLSCs included lowered the survival and number of spindle-shaped cells, and shrinkage and shortening of cell fibers. Notably, celecoxib promoted cell survival function and activated antioxidants such as SOD and Nrf2 by positively regulating the cell survival signal pathway, and also reduced the number of morphological changes in hPDLS. Immunohistochemistry results showed a greater number of SOD- and Nrf2-stained cells in the celecoxib-treated group following oxidative stress. Conclusion : By increasing SOD and Nrf2 expression at the antioxidant system, the findings suggest that celecoxib enhanced the antioxidative ability of hPDLSCs and protected cell viability against H2O2-induced oxidative stress by increasing SOD and Nrf2 expression in the antioxidant system.

Biocompatibility of bioaggregate cement on human pulp and periodontal ligament (PDL) derived cells (사람의 치수 및 치주인대 세포에 대한 Bioaggregate 시멘트의 생체적합성에 대한 연구)

  • Chung, Choo-Ryung;Kim, Eui-Seong;Shin, Su-Jung
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.6
    • /
    • pp.473-478
    • /
    • 2010
  • Objectives: This study was performed to investigate the biocompatibility of newly introduced Bioaggregate on human pulp and PDL cells. Materials and Methods: Cells were collected from human pulp and PDL tissue of extracted premolars. Cell culture plate was coated either with Bioaggregate or white MTA, then the same number of cells were poured to cell culture dishes. Cell attachment and growth was examined under a phase microscope after 1,3 and 7 days of seeding. Cell viability was measured and the data was analyzed using Student t-test and one way ANOVA. Results: Both types of cells used in this study were well attached and grew healthy on Bioaggregate and MTA coated culture dishes. No cell inhibition zone was observed in Bioaggregate group. There was no statistical difference of viable cells between bioaggreagte and MTA groups. Conclusions: Bioaggregate appeared to be biocompatible compared with white MTA on human pulp and PDL cells.

The Effect of Interleukin $1-{\beta}$, Platelet Derived Growth Factor-BB and Transforming Growth $Factor-{\beta}$ on the expression of PDLs17 mRNA in the Cultured Human Periodontal Ligament Fibroblasts (($IL-1{\beta}$), PDGF-BB 그리고 $TGF-{\beta}$가 사람 배양 치주인대 섬유모세포의 PDLs17 mRNA의 발현에 미치는 영향)

  • Lirn, Ki-Jung;Han, Kyung-Yoon;Kirn, Byung-Ock;Yeorn, Chang-Yeob;Park, Joo-Cheol
    • Journal of Periodontal and Implant Science
    • /
    • v.31 no.4
    • /
    • pp.787-801
    • /
    • 2001
  • The molecular mechanisms control the function of PDL(periodonta1 ligament) cells and/or fibroblasts remain unclear. PDLsl7, PDL-specific gene, had previousely identified the cDNA for a novel protein from cultured PDL fibroblasts using subtraction hybridization between gingival fibroblasts and PDL fibroblasts. The purpose of this study was to determine the regulation by growth factors and cytokines on PDLsl7 gene expression in cultured human periodontal ligament cells and observe the immunohistochemical localization of PDLsl7 protein in various tissues of mouse. Primary PDL fibroblasts isolated by scraping the root of the extracted human mandibular third molars. The cells were incubated with various concentration of human recombinant $IL-1{\beta}$, PDGF-BB and TGF\;${\beta}$ for 48h nd 2 weeks. At each time point total RNA was extracted and the levels of transcription ere assessed by reverse transcription-polymerase chain reaction (RT-PCR assay). polyclonal antiserum raised against PDLsl7 peptides, CLSVSYNRSYQINE and SEAVHETDLHDGC, were made, and stained the tooth, periodontium, developing bone, bone marrow and mid-palatal suture of the mouse. The results were as follows. 1. PDLsl7 mRNA levels were increased in response to PDGF (10ng/ml) and $TGF\;{\beta}$(20ng/ml) after treatment of the $IL-1{\beta}$, PDGF-BB and $TGF{\beta}$for 48 h. 2. PDLsl7 was up-regulated only by $TGF{\beta}$(20 ng/ml) after treatment of the $IL-1{\beta}$, PDGF-BB and $TGF\;{\beta}$ for 2 weeks and unchanged by the other stimulants. 3. PDLsl7 was a novel protein coding the 142 amino acid peptides in the ORF and the nucleotide sequences of the obtained cDNA from RT-PCR was exactly same as the nucleotides of the database. 4. Immunohistochemical analysis showed that PDLsl7 is preferentially expressed in the PDL, differentiating osteoblast-like cells and stromal cells of the bone marrow in the adult mouse. 5. The expression of PDLsl7 protein was barely detectable in gingival fibroblasts, hematopoetic cells of the bone marrow and mature osteocytes of the alveolar bone. These results suggest that PDLsl7 might upregulated by PDGF-BB or $TGF{\beta}$ and acts at the initial stage of differentiation when the undifferentiated mesenchymal cells in the bone marrow and PDL differentiate into multiple cell types. However, more research needs to be performed to gain a better understanding of the exact function of PDLsl7 during the differentiation of bone marrow mesenchymal and PDL cells.

  • PDF

Effect of Citric Acid and Tetracycline HCl Root Conditioning on rhBMP-2 on Human Periodontal Ligament Fibroblast and Osteoblast cell (구연산과 테트라싸이클린으로 처리한 치근면에서 rhBMP-2가 치주인대섬유아세포와 골아세포의 활성에 미치는 영향)

  • Shim, Jung-Min;Han, Soo-Boo;Seol, Yang-Jo;Lee, Yong-Moo;Kim, Kyeong-Hwa;Kye, Seung-Beom;Choi, Sang-Mook;Chung, Chong-Pyoung
    • Journal of Periodontal and Implant Science
    • /
    • v.31 no.1
    • /
    • pp.21-41
    • /
    • 2001
  • The goal of Periodontal treatment is predictable periodontal regeneration. But until now, many products including GTR materials and growth factors are beyond of complete regeneration. BMP can induce ectopic bone formation when implanted into sites such as rat muscle and can greatly enhance healing of bony defects when applied exogenously. BMP can promote periodontal regeneration by their ability to stimulate new bone and new cementum formation. But little is known about optimal conditions required for the application. Root conditioning is used for bioacive root change so altered root surface provides a substrate that promotes chemotaxis, migration and attachment of peridontal cells encouraging connective attachment to the denuded root surface. The aim of this study is to investigate whether the acid conditioning change effect of rhBMP-2 on human periodontal ligament cell and osteoblast cell line. 288 periodontally involved root dentin slices are divided into 6 groups, each 48, 1)control, 2)treated with BMP, 3)treated with citric acid 4)treated with citric acid+BMP 5)treated with tetracycline 6)treated with TC+BMP. Each group was devided half, so 12 root dentin slices were seeded with periodontal ligament cells and 12 were seeded with osteoblasts. At day 2 and 7, cell number, protein assay, ALP activitiy was measured. To investigate morphology of cultured cells, SEM was employed. Statistical analysis was performed with SPSS 8.0 either t-test or ANOVA test. The results are ; Protein assay and cell number was slightly decreased in CA+BMP group compared to Ca group but it was not statistically significant and ALP activity was much more increased in CA+BMP group compared to CA group so there was no statistically significance between BMP and CA+BMP group and statistically significant compared to control group. Cell number and protein assay was slightly increased in TC group and ALP activity was much less the BMP group and CA group. Cell number and protein and ALP activity was not much increased in TC+BMP group. TC group and TC+BMP group showed cell morphology change in SEM. This results suggested that application of root surface with citric acid before BMP treatment might give better result in periodontal regeneration.

  • PDF

THE EFFECTS OF TRANSFORMING GROWTH FACTOR-$\beta$ ON THE VIABILITY OF HUMAN PERIODONTAL LIGAMENT CELL AND ON THE EXPERIMENTAL TOOTH MOVEMENT IN RAT (Transforming growth factor-$\beta$가 인체 치주 인대세포 활성 및 백서의 실험적 치아 이동에 미치는 영향에 관한 연구)

  • Park, Yun-Kyung;Kim, Sang-Cheol
    • The korean journal of orthodontics
    • /
    • v.28 no.2 s.67
    • /
    • pp.311-327
    • /
    • 1998
  • The purpose of this study was to evaluate the effects of Transforming Growth Factor-${\beta}$ (TGF-${\beta}$) on the viability of human periodontal ligament cells, in-vitro and on the experimental tooth movement in rat, in-vivo. Human periodontal ligaments were cultured from the first premolar tooth extracted for the purpose of the orthodontic treatment. 0.1, 1, 5 and 10ng/m1 of TGF-${\beta}$ was given to the cultured wells, respectively and the viability was evaluated by MTT assay. Twenty Sprague-Dawley rats were divided into 5 experimental groups(4 rats in each) where 100g of force was applied from helical spring across the maxillary incisors. TGF-${\beta}$ was injected via Hamilton syringe into the periodontal ligament at the mesial and the distal surface of a maxillary incisor of 2 rats in each experimental group. Phosphate buffer saline(PBS) was injected in 2 other rats as controls. Experimental groups were sacrificed at 1, 3, 7, 14 and 28 days after force application, respectively. The obtained tissues were evaluated histologically. The obtained results were as follows: 1. The viability of periodontal ligament cells in 0.1ng/ml of TGF-${\beta}$ was not significantly different from that of control at 1-, 2- and 3-day of cultivation. 2. The viability of periodontal ligament cells was significantly increased at 3-day in 1ng/ml or 5ng/ml of TGF-${\beta}$, and at 2-,3-day in 10ng/ml of of TGF-${\beta}$. 3. The zone of hyalinization in periodontal ligament in pressure side was smaller in TGF-${\beta}$ injection group than that in control group at 3-day after the application of experimental force in rat. But no difference was seen after 7-day. 4. Osteoclastic activity and capillary prolieferation in pressure side were greater in TGF-${\beta}$ injection group than that in control group at 3-day to 7-day. 5. Osteoblastic activity and new bone fomation in tension side were greater in TGF-${\beta}$ injection group than that in control group at 3-day to 14-day.

  • PDF