• Title/Summary/Keyword: Human pathogenic bacteria

Search Result 154, Processing Time 0.027 seconds

Apoptotic Effects of the B Subunit of Bacterial Cytolethal Distending Toxin on the A549 Lung Cancer Cell Line

  • Yaghoobi, Hajar;Bandehpour, Mojgan;Kazemi, Bahram
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.sup3
    • /
    • pp.299-304
    • /
    • 2016
  • Cytolethal distending toxin (CDT) is a secreted tripartite genotoxin produced by many pathogenic gram-negative bacteria. It is composed of three subunits, CdtA, CdtB and CdtC, and CdtB-associated deoxyribonuclease (DNase) activity is essential for the CDT toxicity. In the present study, to design a novel potentially antitumor drug against lung cancer, the possible mechanisms of cdtB anticancer properties were explored in the A549 human lung adenocarcinoma cell line. A recombinant plasmid pcDNA3.1/cdtB was constructed expressing CdtB of human periodontal bacterium Aggregatibacter actinomycetemcomitans and investigated for toxic properties in A549 cells and possible mechanisms. It was observed that plasmid pcDNA3.1/cdtB caused loss of cell viability, morphologic changes and induction of apoptosis. Furthermore, measurement of caspase activity indicated involvement of an intrinsic pathway of cell apoptosis. Consequently, the recombinant plasmid pcDNA3.1/cdtB may have potential as a new class of therapeutic agent for gene therapy of lung cancer.

Synthesis, Antibacterial, Docking and Anticancer Evaluation of N-Substituted Benzoyl Derivatives

  • Arthi, P.;Shobana, S.;Srinivasan, P.;Rahiman, A. Kalilur
    • Journal of Integrative Natural Science
    • /
    • v.7 no.4
    • /
    • pp.241-252
    • /
    • 2014
  • A series of N-benzoylated ligands incorporating three different benzoyl groups 2,2'-(benzoyliminodiethylene)-4-substituted phenols ($L^{1,4,7}$), 2,2'-(4-nitrobenzoyliminodiethylene)-4-substituted phenols ($L^{2,5,8}$) and 2,2'-(3,5-dinitrobenzoyliminodiethylene)-4-substituted phenols ($L^{3,6,9}$) were synthesized and characterized by IR, $^1H$ NMR, $^{13}C$ NMR and mass spectroscopy. The In vitro antibacterial activity of investigated ligands were tested against human pathogenic bacteria such as four Gram (-) Enterococcus faecalis, Pseudomonas aeruginosa, Staphylococcus aureus, Vibrio cholera, Vibrio harveyi and two Gram (+) Staphylococcus aureus, Streptococcus mutans. Furthermore, docking studies were undertaken to gain insight into the possible binding mode of these compounds with the binding site of the topoisomerase II (PDB: 4FM9) enzyme which is involved in DNA superhelicity and chromosome seggregation. The N-benzoylated derivatives $L^{5,7,8}$ have significant anticancer activity as Topoisomerase inhibitors. The ligands $L^5$ and $L^8$ were tested for their anticancer activity against human liver adenocarcinoma (HepG2) cell line with the MTT assay.

Biosensor System for the Detection and Assessment of Safety in Milk and Dairy Products (우유 및 유제품의 안전성 평가를 위한 바이오센서의 이용)

  • Kim, Hyoun-Wook;Han, Sang-Ha;Ham, Jun-Sang;Seol, Kuk-Hwan;Jang, Ae-Ra;Kim, Dong-Hun;Oh, Mi-Hwa
    • Journal of Dairy Science and Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.51-57
    • /
    • 2011
  • Milk and dairy products are nutritionally one of the most important food in human health and the quality of raw milk is significantly important to ensure safety of dairy products. However, milk and dairy products are commonly related with chemical and microbial contaminations. Therefore, rapid and reliable detection of hazardous (e.g. pathogenic bacteria, pesticides, antibiotics, microbial toxins) in milk and dairy products is essential to ensure human health and food safety. Conventional methods for detection of food hazardous are mostly time-consuming to yield a results. Recently, biosensors have been focused as its rapidity and high sensitivity to analyse chemical and microbial hazardous from a variety of foods and environments. This study reviewed the recent trends and applications of biosensors as rapid detection method of hazardous in milk and dairy products.

  • PDF

Fabrication of Antimicrobial Wound Dressings Using Silver-Citrate Nanorods and Analysis of Their Wound-Healing Efficacy

  • Park, Yong Jin;Jeong, Jisu;Kim, Jae Seok;Choi, Dong Soo;Cho, Goang-Won;Park, Jin Seong;Lim, Jong Kuk
    • Journal of Integrative Natural Science
    • /
    • v.12 no.2
    • /
    • pp.47-57
    • /
    • 2019
  • Staphylococcus epidermidis is well-known not only as an innocuous normal flora species commonly isolated from human skin, but also as an important bacterial species to keep skin healthy, because this species can protect the human skin from pathogenic microorganisms. However, S. epidermidis turns into a potential pathogen in damaged skin, because these bacteria can easily form a biofilm on the wound area and provide antimicrobial resistance to other microorganisms embedded in the biofilm. Thus, it is important to kill S. epidermidis in the early stage of wound treatment and block the formation of biofilms in advance. In the present study, hydrogel wound dressings were fabricated using polyvinyl alcohol/polyethylene glycol containing silver citrate nanorods, which have been proven to have strong antimicrobial activity, especially against S. epidermidis, and their wound-healing efficacy was investigated in vivo using a rat experiment.

Present Status of Fermented Milk Products in Japan

  • Hosono, Akiyoshi
    • 한국유가공학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.21-39
    • /
    • 2004
  • Fermented milks have been recognized as healthy foods since ancient times, but those using intestinal bacteria such as Bifidobacterium and lactic acid bacteria (LAB) are even more valuable from the standpoint of view of maintaining health. They have also now come to be recognized as important in the field of preventive medicine. Although advances in the medical sciences in the last 50 years have significantly increased the human lift span, an unfortunate fact is that many of us are now living long enough to experience chronic disorders such as coronary heart disease, hypertension, osteoporosis, diabetes and cancer. In recent years there has been renewed interest in health promotion and disease prevention by incorporating probiotic bacteria into foods to counteract harmful bacteria in the intestinal tract. Therefore, there are now a wide variety of commercial products containing prospective probiotics that claim health-promoting effects, such reductions in large botvel carcinogens and mutagens, antitumor properties, cholesterol-lowering effects, increased lactose digestion, relief from con-stipation, stimulation of immunocomponent cells and enhancement of phagocytosis. Two well-known representative probiotic is LAB and Bifidobaclerium. Traditional probiotic dairy strains of LAB which have been designated as GRAS (Generally Recognized As Safe) bacteria have a long history of safe use and most strains are considered comestible microorganisms with no pathogenic potential. Accordingly, there is considerable interest in extending the range of foods containing probiotic organisms from dairy foods to infant formulas, baby foods, and pharmaceuticals. In addition, the ingestion of probiotics, prebiotics, and symbiotic as wll as combinations of pro- and prebiotics has recently aroused renewed interest as enhancing the beneficial relationship between the host and intestinal microflora in both healthy and diseased indivisuals. Non-communicable chronic diseases such as cancer, cerebral hemorrhage, is chemic heart disease, and diabetes mellitus has recently been recognized as adult diseases in Japan as well as other countries. and are considered to be inevitably associated with aging. These diseases occur as a result of individual life styles. The Japanes Government. Ministry of Health, Labor and Welfare has proposed substituting the term 'adult diseases' with 'lifestyle-related diseases'. It has emphasized the importance of prevention rather than treatment. since the well-known increase in the elderly population in Japan is predicted to result in a variety of socioeconomic problems. n this lecture on the Present status of fermented milk products in Japan, I will report a strategy for the development of fermented milk products in Japan from the standpoint of view of research in Japan on LAB and Bifidobacteria. They could play an important role in preserving human health by controlling intestinal microflora capable of producing toxic effects on the host.

  • PDF

Mining the Proteome of Fusobacterium nucleatum subsp. nucleatum ATCC 25586 for Potential Therapeutics Discovery: An In Silico Approach

  • Habib, Abdul Musaweer;Islam, Md. Saiful;Sohel, Md.;Mazumder, Md. Habibul Hasan;Sikder, Mohd. Omar Faruk;Shahik, Shah Md.
    • Genomics & Informatics
    • /
    • v.14 no.4
    • /
    • pp.255-264
    • /
    • 2016
  • The plethora of genome sequence information of bacteria in recent times has ushered in many novel strategies for antibacterial drug discovery and facilitated medical science to take up the challenge of the increasing resistance of pathogenic bacteria to current antibiotics. In this study, we adopted subtractive genomics approach to analyze the whole genome sequence of the Fusobacterium nucleatum, a human oral pathogen having association with colorectal cancer. Our study divulged 1,499 proteins of F. nucleatum, which have no homolog's in human genome. These proteins were subjected to screening further by using the Database of Essential Genes (DEG) that resulted in the identification of 32 vitally important proteins for the bacterium. Subsequent analysis of the identified pivotal proteins, using the Kyoto Encyclopedia of Genes and Genomes (KEGG) Automated Annotation Server (KAAS) resulted in sorting 3 key enzymes of F. nucleatum that may be good candidates as potential drug targets, since they are unique for the bacterium and absent in humans. In addition, we have demonstrated the three dimensional structure of these three proteins. Finally, determination of ligand binding sites of the 2 key proteins as well as screening for functional inhibitors that best fitted with the ligands sites were conducted to discover effective novel therapeutic compounds against F. nucleatum.

Rapid, Sensitive, and Specific Detection of Salmonella Enteritidis in Contaminated Dairy Foods using Quantum Dot Biolabeling Coupled with Immunomagnetic Separation

  • Kim, Hong-Seok;Chon, Jung-Whan;Kim, Hyunsook;Kim, Dong-Hyeon;Yim, Jin-Hyuk;Song, Kwang-Young;Kang, Il-Byung;Kim, Young-Ji;Lee, Soo-Kyung;Seo, Kun-Ho
    • Journal of Dairy Science and Biotechnology
    • /
    • v.33 no.4
    • /
    • pp.271-275
    • /
    • 2015
  • Colloidal semiconductor CdSe-ZnS core-shell nanocrystal quantum dot (Qdot) are luminescent inorganic fluorophores that show potential to overcome some of the functional limitations encountered with organic dyes in fluorescence labeling applications. Salmonella Enteritidis has emerged as a major cause of human salmonellosis worldwide since the 1980s. A rapid, specific, and sensitive method for the detection of Salmonella Enteritidis was developed using Qdot as a fluorescence marker coupled with immunomagnetic separation. Magnetic beads coated with anti-Salmonella Enteritidis antibodies were employed to selectively capture the target bacteria, and biotin-conjugated anti-Salmonella antibodies were added to form sandwich immune complexes. After magnetic separation, the immune complexes were labeled with Qdot via biotin-streptavidin conjugation, and fluorescence measurement was carried out using a fluorescence measurement system. The detection limit of the Qdot method was a Salmonella Enteritidis concentration of $10^3$ colony-forming units (CFU)/mL, whereas the conventional fluorescein isothiocyanate-based method required over $10^5CFU/mL$. The total detection time was within 2 h. In addition to the potential for general nanotechnology development, these results suggest a new rapid detection method of various pathogenic bacteria from a complex food matrix.

  • PDF

Chemical and Biological Properties on Sanitary of Cultured Oyster Crassostrea gigas Intended for Raw Consumption or Use in Seafood Products (양식산 굴(Crassostrea gigas)의 생굴 및 가공소재용으로서 화학적 및 생물학적 위생 특성)

  • Park, Sun Young;Lee, Kyung Don;Lee, Jung Suck;Heu, Min Soo;Lee, Tae-Gee;Kim, Jin-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.50 no.4
    • /
    • pp.335-342
    • /
    • 2017
  • Oysters Crassostrea gigas are a globally popular shellfish for human consumption. As filter-feeding bivalve mollusks, oysters may harbor many microorganisms and chemicals that could pose potential human health risks. The objective of this study was to investigate the suitability of cultured oysters for raw consumption or use in seafood products by measuring concentrations of harmful microorganisms and chemicals in their flesh. Microbial concentrations in cultured oysters were found to be: $1.0{\times}10^2-6.0{\times}10^4CFU/g$ (viable cell counts), not detected $(ND)-5.4{\times}10^3CFU/g$ (coliform bacteria), $ND-1.3{\times}10^2CFU/g$ (E. coli), and $ND-4.6{\times}10^3CFU/g$ (Vibrio parahaemolyticus). Other pathogenic bacteria, including Enterohemorrhagic E. coli (EHEC), Listeria monocytogenes, Staphylococcus aureus, and Salmonella spp., were not detected in any samples. Heavy metal concentrations of cultured oysters were ND-0.239 mg/kg (total mercury), ND-1.091 mg/kg (lead), ND-0.968 mg/kg (cadmium). The concentrations of benzo(a)pyrene ranged from $0.280-0.880{\mu}g/kg$. Paralytic shellfish poison ranged from ND-0.58 mg/kg, while diarrhetic shellfish poison was not detected. No radioactivity was detected. These results suggest that oysters intended for raw consumption or use in seafood products should be subjected to chemical and biological controls.

Distribution of Tetracycline Resistance Genes in Pathogenic Bacteria Isolated from Cultured Olive Flounder (Paralichthys olivaceus) in Jeju in 2016 (2016년도 제주지역 양식 넙치(Paralichthys olivaceus)에서 분리된 어병세균의 tetracycline 내성유전자 분포)

  • LEE, Da-Won;JUN, Lyu-Jin;JEONG, Joon-Bum
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.29 no.3
    • /
    • pp.834-846
    • /
    • 2017
  • Aquaculture practices to ensure greater production, such as high density breeding and excessive feeding, are become stressors that raise the prevalence of diseases. Accordingly, increasingly large volumes of antibiotics are used more frequently each year. Long term use antibiotics can generate resistant bacteria, which interrupt treatments and cause a potential transfer to human bodies. Thus, antibiotic resistance is of importance in public health. Tetracycline (Tc) is one of the typical medicines used in the aquaculture drugs, which has a wide range of application including gram-positive and gram-negative bacteria. In the examination of 153 strains isolated from olive flounder (Paralichthys olivaceus) farms located in Jeju in 2016, it turned out that a total of 84 strains were resistant to Tc or oxytetracycline (OTC). The extent to which the strains are resistant to Tc and OTC was confirmed through MIC test, mostly within the range of 25 to $100{\mu}g/m{\ell}$. Twelve different types of tet genes were detected using single and multiplex PCR in the 84 Tc-resistant strains. The PCR was used to find tet(K), tet(M), tet(O), and tet(S), which are known to exist primarily in gram positive strains. According to the results, - tet(S) is the most dominant gene in 49 strains of Streptococcus parauberis, accounting for 63.2%. And there were two strains that have two different types of resistant genes. The multiplex PCR was used to detect tet(A), tet(B), tet(C), tet(D), tet(E), and tet(G), which are commonly found in gram-negative strains. Each of tet(B), tet(D), and tet(B)&(M) was found in a strain presumed to be Vibrio sp., and only tet(D) was found in 10 Edwardsiella tarda strains.

Biocidal Activity of Metal Nanoparticles Synthesized by Fusarium solani against Multidrug-Resistant Bacteria and Mycotoxigenic Fungi

  • Sayed, Manal T. El;El-Sayed, Ashraf S.A.
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.2
    • /
    • pp.226-236
    • /
    • 2020
  • Antibiotic resistance by pathogenic bacteria and fungi is one of the most serious global public health problems in the 21st century, directly affecting human health and lifestyle. Pseudomonas aeruginosa and Staphylococcus aureus with strong resistance to the common antibiotics have been isolated from Intensive Care Unit patients at Zagazig Hospital. Thus, in this study we assessed the biocidal activity of nanoparticles of silver, copper and zinc synthesized by Fusarium solani KJ 623702 against these multidrug resistant-bacteria. The synthesized Metal Nano-particles (MNPs) were characterized by UV-Vis spectroscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and Zeta potential. The Fourier transform infrared spectroscopy (FTIR) result showed the presence of different functional groups such as carboxyl, amino and thiol, ester and peptide bonds in addition to glycosidic bonds that might stabilize the dispersity of MNPs from aggregation. The antimicrobial potential of MNPs by F. solani against the multidrug-resistant (MDR) P. aeruginosa and S. aureus in addition to the mycotoxigenic Aspergillus awamori, A. fumigatus and F. oxysporum was investigated, based on the visual growth by diameter of inhibition zone. Among the synthesized MNPs, the spherical AgNPs (13.70 nm) displayed significant effect against P. aeruginosa (Zone of Inhibition 22.4 mm and Minimum Inhibitory Concentration 21.33 ㎍/ml), while ZINC oxide Nano-Particles were the most effective against F. oxysporum (ZOI, 18.5 mm and MIC 24.7 ㎍/ml). Transmission Electron Microscope micrographs of AgNP-treated P. aeruginosa showed cracks and pits in the cell wall, with internalization of NPs. Production of pyocyanin pigment was significantly inhibited by AgNPs in a concentration-dependent manner, and at 5-20 ㎍ of AgNPs/ml, the pigment production was reduced by about 15-100%, respectively.