• 제목/요약/키워드: Human osteoblast

검색결과 174건 처리시간 0.022초

달팽이 추출물이 골 성장에 미치는 in Vitro 및 in Vivo 영향 (Effect of Snail Extract on Bone Growth in Vitro and in Vivo)

  • 손기호;김태희
    • 생약학회지
    • /
    • 제49권1호
    • /
    • pp.28-39
    • /
    • 2018
  • This study investigated the effect of snail extract on the growth parameters of old female rats (27 weeks). Rats were administered orally with snail extract at a dose of 100 mg/kg, 200 mg/kg, chondroitin sulfate 10 mg/kg and 0.9% saline (control) for 8 weeks. Bone mineral density (BMD) and serum concentrations of insulin-like growth factor 1 (IGF-1) and insulinlike growth factor-binding protein 3 (IGFBP-3) were significantly higher in rats exposed to snail extract for 8 weeks. MG-63 cells (human osteoblast-like cells) were treated with snail extract for 48 h. Their differentiation and proliferation was investigated with Western blot and morphological changes observed via immunofluorescence staining of ${\beta}-catenin$. Treatment with snail extract significantly increased the levels of growth factors including ${\beta}-catenin$ and IGF-1. The snail extract affected osteoblast formation. Morphological changes in MG-63 cells were observed via immunofluorescence staining. Treatment with snail extract increased the expression of ${\beta}-catenin$ in MG-63 cells. Results suggest that the treatment of MG-63 cells with snail extract increased the longitudinal growth and growth factor levels. Snail extract may be pharmacologically effective in osteogenic differentiation in vitro and represents a potential therapeutic agent for bone formation.

우태아 혈청이 포함된 Poly-glycolic Acid 배양판에서 인간 조골세포의 성장 (The Growth of Human Osteoblasts in Culture Dishes Made with Poly-glycolic Acid Containing Fetal Bovine Serum)

  • 최재원;김용하;문영미;김연정;최식영
    • Archives of Plastic Surgery
    • /
    • 제33권5호
    • /
    • pp.612-615
    • /
    • 2006
  • Purpose: An ideal bony construct can be divided into two broad categories: (1) the design and fabrication of biodegradable, biomimetic scaffolds that provide correct signals to induce osteogenesis: (2) the identification of an ideal source of osteoprogenitor cells to seed onto the scaffold. We selected poly-glycolic acid as a synthetic scaffold among various scaffolds because of these properties. Meanwhile, culture medium is supplemented with fetal bovine serum(FBS): such serum contains essential elements such as proteins, hormones, growth factors and trace minerals. The composition of FBS can be ideal for various cell growth in vitro. We supposed that we could enhance bone growth at a fractured site if FBS was mixed with synthetic scaffold-PGA. Methods: We cultured human osteoblasts in five different prepared culture dishes made with FBS and PGA mixture. The mixtures contained different ratio of FBS, that is, 0, 1.5, 3, 7, and 10%. We cultured human osteoblasts for seven days and examined the growth and attachment of the cells at the 1st, 3rd, 5th, 7th days, respectively. Results: In the mixture of 0% FBS and PGA, the growth of the cells lasted for one day. In 1.5 and 3% FBS and PGA, the growth of the cells was examined at the 3rd day, then minimally declined at the 5th and 7th days. In 7% FBS and PGA, the growth of the cells lasted for 5 days, then declined at the 7th day. In 10% FBS and PGA, the growth of the cells lasted for 5 days, then declined at the 7th day. Staining status of the osteoblasts with alkaline phosphatase showed pale pink color in 0% FBS and PGA groups, but bright pink color in 1.5, 3, 7, 10% FBS and PGA groups, especially in 3%, 7%. Conclusion: In consequence, the growth of human osteoblast was higher in the mixture of FBS and PGA groups than in pure PGA ones. It is assumed that the mixture of FBS and PGA affects the proliferation of human osteoblasts.

Lactoferrin Constitutively Enhances Differentiation of Osteoblastic MC3T3-E1 Cells in Vitro

  • Yang, Hee-Young;Lee, Ha-Mi;Park, Byung-Ju;Lee, Tae-Hoon
    • International Journal of Oral Biology
    • /
    • 제39권3호
    • /
    • pp.145-151
    • /
    • 2014
  • During bone remodeling, there is requirement of differentiation of osteoblastic cells. Previously, we identified proteins differentially expressed in soft tissue during bone healing. Of these proteins, we focused the effect of LTF on differentiation of osteoblast. In order to analyze the osteogenic ability of LTF, we treated conditioned media collected from human LTF-stably transfected HEK293T cells into osteoblastic MC3T3-E1. The results showed that the activity and expression of alkaline phosphatase were increased in MC3T3-E1 cells treated with conditioned media containing LTF in dose- and time-dependent manner. At the same time, we observed the significant increase of the expression of osteoblastic genes, such as ALP, BSP, COL1A1, and OCN, and along with matrix mineralization genes, such as DMP1 and DMP2, in LTF conditioned media-treated groups. Moreover, the result of treating recombinant human LTF directly into osteoblastic MC3T3-E1 showed the same pattern of treating conditioned media containing LTF. Our study demonstrated that LTF constitutively enhances osteoblastic differentiation via induction of osteoblastic genes and activation of matrix mineralization in MC3T3-E1 cells.

Phelligridin D maintains the function of periodontal ligament cells through autophagy in glucose-induced oxidative stress

  • Kim, Ji-Eun;Kim, Tae-Gun;Lee, Young-Hee;Yi, Ho-Keun
    • Journal of Periodontal and Implant Science
    • /
    • 제50권5호
    • /
    • pp.291-302
    • /
    • 2020
  • Purpose: The objective of this study was to investigate whether phelligridin D could reduce glucose-induced oxidative stress, attenuate the resulting inflammatory response, and restore the function of human periodontal ligament cells (HPDLCs). Methods: Primary HPDLCs were isolated from healthy human teeth and cultured. To investigate the effect of phelligridin D on glucose-induced oxidative stress, HPDLCs were treated with phelligridin D, various concentrations of glucose, and glucose oxidase. Glucose-induced oxidative stress, inflammatory molecules, osteoblast differentiation, and mineralization of the HPDLCs were measured by hydrogen peroxide (H2O2) generation, cellular viability, alkaline phosphatase (ALP) activity, alizarin red staining, and western blot analyses. Results: Glucose-induced oxidative stress led to increased production of H2O2, with negative impacts on cellular viability, ALP activity, and calcium deposition in HPDLCs. Furthermore, HPDLCs under glucose-induced oxidative stress showed induction of inflammatory molecules (intercellular adhesion molecule-1, vascular cell adhesion protein-1, tumor necrosis factor-alpha, interleukin-1-beta) and disturbances of osteogenic differentiation (bone morphogenetic protein-2, and -7, runt-related transcription factor-2), cementogenesis (cementum protein-1), and autophagy-related molecules (autophagy related 5, light chain 3 I/II, beclin-1). Phelligridin D restored all these molecules and maintained the function of HPDLCs even under glucose-induced oxidative stress. Conclusions: This study suggests that phelligridin D reduces the inflammation that results from glucose-induced oxidative stress and restores the function of HPDLCs (e.g., osteoblast differentiation) by upregulating autophagy.

Tumor Necrosis Factor ${\alpha}$ up-regulates the Expression of beta2 Adrenergic Receptor via NF-${\kappa}B$-dependent Pathway in Osteoblasts

  • Baek, Kyunghwa;Kang, Jiho;Hwang, Hyo Rin;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • 제38권3호
    • /
    • pp.121-126
    • /
    • 2013
  • Tumor necrosis factor alpha ($TNF{\alpha}$) is a multifunctional inflammatory cytokine that regulates various cellular and biological processes. Increased levels of $TNF{\alpha}$ have been implicated in a number of human diseases including diabetes and arthritis. Sympathetic nervous system stimulation via the beta2-adrenergic receptor (${\beta}2AR$) in osteoblasts suppresses osteogenic activity. We previously reported that $TNF{\alpha}$ upregulates ${\beta}2AR$ expression in murine osteoblastic cells and that this modulation is associated with $TNF{\alpha}$ inhibition of osteoblast differentiation. In our present study, we explored whether $TNF{\alpha}$ induces ${\beta}2AR$ expression in human osteoblasts and then identified the downstream signaling pathway. Our results indicated that ${\beta}2AR$ expression was increased in Saos-2 and C2C12 cells by $TNF{\alpha}$ treatment, and that this increase was blocked by the inhibition of NF-${\kappa}B$ activation. Chromatin immunoprecipitation and luciferase reporter assay results indicated that NF-${\kappa}B$ directly binds to its cognate elements on the ${\beta}2AR$ promoter and thereby stimulates ${\beta}2AR$ expression. These findings suggest that the activation of $TNF{\alpha}$ signaling in osteoblastic cells leads to an upregulation of ${\beta}2AR$ and also that $TNF{\alpha}$ induces ${\beta}2AR$ expression in an NF-${\kappa}B$-dependent manner.

Astragalus membranaceus promotes differentiation and mineralization in human osteoblast-like SaOS-2 cells

  • Huh, Jeong-Eun;Kim, Nam-Jae;Yang, Ha-Ru;Cho, Eun-Mi;Baek, Yong-Hyeon;Choi, Do-Young;Kim, Deog-Yoon;Cho, Yoon-Je;Kim, Kang-Il;Park, Dong-Suk;Lee, Jae-Dong
    • Journal of Acupuncture Research
    • /
    • 제22권2호
    • /
    • pp.181-190
    • /
    • 2005
  • Background & Object : The differentiation of osteoblasts controlled by various growth factors and matrix proteins expression in bone. The aim of this study was to identify the Astragalus membranaceus that may induce the osteogenic activity in human osteoblast-like SaOS-2 cells. Methods : The osteogenic activity of Astragalus membranaceus were evaluated by WST-8 assay, ALP activity, RT-PCR analysis of VEGF, OCN, OPN, Col I mRNA, and ELISA or colorimetric analysis, and mineralization by Alizarin red staining in SaOS-2 cells. Results : Astragalus membranaceus had no effect on viability of osteoblastic cells, and dose dependently increased alkaline phosphatase (ALP) activity. Astragalus membranaceus markedly increased mRNA expression for vascular endothelial growth factor (VEGF), osteocalcin (OCN), osteopontin (OPN), and type I collagen (Col 1) in SaOS-2 cells. Extracellular accumulation of proteins such as VEGF, and Col I was increased in a dose-dependent manner. Also, Astragalus membranaceus significantly induced mineralization in the culture of SaOS-2 cells. Conclusion : This study showed that Astragalus membranaceus not affect on viability, but it enhanced ALP activity, VEGF, bone matrix proteins such as OCN, OPN and Col I, and mineralization in SaOS-2 cells. These results propose that Astragalus membranaceus plays an important role in osteoblastic bone formation, and possibly lead to the development of bone-forming drug.

  • PDF

자연동(自然銅)이 초기 골절 생쥐 정강이뼈의 Re-modeling에 미치는 영향 (Effects of Administration of Pyritum on Fracture Healing in Mice)

  • 신경민;정찬영;황민섭;이승덕;김경호;김갑성
    • Journal of Acupuncture Research
    • /
    • 제26권5호
    • /
    • pp.65-75
    • /
    • 2009
  • Objectives : Pyrite is one of the important prescriptions that has been used in oriental medicine for healing of fracture. It is reasonable, therefore, to postulate that native copper affects the process of bone metabolism and bone formation. The purpose of this study is to discover the effect of Pyrite on the healing of tibia fracture. Methods : 1. In vitro test : MG-63 cell in human body and the Pyritum in the ratio of 0.5mg/ml, 1.0mg/ml, 1.5mg/ml, 2.0mg/ml were incubated for 24 hours. After 24 hours, RNA was extracted via trizol reagent (Sigma, USA). In order to understand the activation of osteoblast, the level of OPN mRNA, osteopontin, was measured. 2. In vivo tesgroups normal group, control group and experimental group. Left tibia bones of mice in CON and JT groups were fractured by bone cutters. Pyrite was orally administered to the experimental group. After 14 days, each group's tibia specimen was constructed to observe changes in activation of proinflmmatory cytokines in relation to MIF and IL-6. Also, proliferation of osteoblast and osteopontin were measured via changes in levels of OPN and OPN mRNA. Results : In jn-Titro test, the level of OPN mRNA, osteopontin production was remarkably increased in Pyritum-treated MG-63 cells. In in-vitro test, fractured area in external tibia morphology was increased more in the JT group than that of the CON group. Osteogenesis, endochodrial ossification, and osteoid in fractured area were also increased more in the JT group than that of the CON group. Increase in OPN mRNA, osteopontin level and osteoblast's proliferation were observed. Activation of MIF and IL-6 was confirmed from the fracture region. Conclusions : From the result, development of a new stimulator in healing fracture via pyrite is expected.

  • PDF

육미지황환(六味地黃丸) 에탄올 추출물이 난소제거 흰쥐의 경골 소주골에 미치는 영향 (Effect of Ethanol Extract of Yukmijiwhang-Whan on Trabecular Bone Area in OVX Rats)

  • 김정숙;하혜경;이제현;송계용;김혜진;신선미
    • 한국한의학연구원논문집
    • /
    • 제6권1호
    • /
    • pp.123-132
    • /
    • 2000
  • Bone is continuously remodeled during adult life with the resorption of old bone by osteoclasts and its subsequent replacement by osteoblast. Bone homeostasis is maintained by a balance between activities of osteoblasts and osteoclasts, but an imbalance between resorption and formation results in bone diseases including osteoporosis. Osteoblasts line up on the bone surface, especially regions of new bone formation, lay down bone matrix (osteoid) in orderly lamellae and induce its mineralization. Thus, the increased activity of osteoblasts is helpful to treat and prevent osteoporosis. In this study, we examined whether 80% EtOH extract of yukmijiwhang-whan is capable of affecting osteoblast proliferation using human osteoblast-like cell line, MG-63 and Saos-2. In an in vivo experiment, extract of yukmijiwhang-whan was administered for 9 weeks to ovariectomized (OVX) rats. At necropsy, uterus weights were measured, and trabecular bone areas (TBAS) of tibia and the sixth lumbar vertebra were measured by bone histomorphology. The maximum cell proliferation of MG-63 caused by extract of yukmijiwhang-whan at $5\;{\times}\;10^{-6}\;mg/ml$ was approximately 115% compared with control. In Saos-2, cell proliferation was approximately 145% of control at $5\;{\times}\;10^{-4}\;mg/ml$ and maximum alkaline phosphatase (ALP) activity was approximately 143% of control at $5\;{\times}\;10^{-5}\;mg/ml$. In animal study, however, the tibia and lumbar TBAS of the yukmijiwhang-whan group did not increased than the OVX control group. In conclusion, the 80% EtOH extract of yukmijiwhang-whan increased proliferation of osteoblasts but did not prevent bone loss in OVX rats.

  • PDF

쥐의 골수로부터 추출한 줄기세포를 이용한 조골세포로의 분화 유도과정에서 나타난 문제점에 관한 분석 연구 (PROBLEMS IN OSTEOGENIC DIFFERENTIATION OF RAT BONE MARROW STROMAL CELLS)

  • 김인숙;조태형;장옥련;이규백;박용두;노인섭;;이종호;김명진;황순정
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제27권1호
    • /
    • pp.1-8
    • /
    • 2005
  • This study was aimed to characterize osteogenic potential of rat bone marrow stromal cells (BMSC) isolated with standard flushing method and investigate the plasticity of transdifferentiation between osteoblastic and adipocytic lineage of cultured BMSC. Unlike aspiration method in human, rat bone marrow was extracted by means of irrigation with culture media that elevates the possibility of co-extraction of committed osteoprogenitor, or preosteoblast or other progenitor cells of several types present inside bone marrow. The cultured stromal cells showed high ALP activity which is representative marker of osteoblast without any treatment. Osteogenic inducers such as Dex and BMP-2 were examined for the evaluation of their effect on osteogenic and adipocytic differentiation of stromal cells, because they function as osteoinductive agent in stromal cells, but simultaneously induce adipogenic differentiation. Osteogenic differentiation was evaluated by measuring alkaline phosphatase activity or mRNA expression of osteoblast markers such as osteopontin, bone sialoprotein, collagen type I and CbfaI, and in vitro matrix mineralization by von Kossa staining. Oil red staining method was used to detect adipocyte and adipocytic marker, aP2 and $PPAR{\gamma}2$ expression was examined using RT-PCR. It can be supposed that irrigation procedure resulted in high portion of already differentiation-committed osteoprogenitor cell showing elevated ALP activity and strong mineralization only under the supplement of $100{\mu}M$ ascorbic 2-phosphate and 10mM ${\beta}$-glycerophosphate without any treatment of osteogenic inducers such as Dex and BMP-2. Dex and BMP-2 seemed to transdifferentiate osteoprogenitor cells having high ALP activity into adipocytes temporarily, but continuous treatment redifferentiated into osteoblast and developed in vitro matrix mineralization. This property must be considered either in tissue engineering for bone regeneration, or in research of characterization of osteogenic differentiation, with rat BMSC isolated by the standard irrigation method.

골수유래줄기세포에서 분화된 골유사세포에서 ${\beta}-TCP$와 rhBMP-2의 골형성 효과에 관한 연구 (THE EFFECTS OF ${\beta}-TCP$/rhBMP-2 ON BONE FORMATION IN OSTEOBLAST-LIKE CELLS INDUCED FROM BONE MARROW-DERIVED MESENCHYMAL STEM CELLS)

  • 최용수;황경균;이재선;박창주;심광섭
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제34권4호
    • /
    • pp.419-427
    • /
    • 2008
  • The present study aimed to investigate the osteogenic potentials of differentiated osteoblast-like cells (DOCs) induced from bone marrow-derived mesenchymal stem cells (MSCs) on ${\beta}-tricalcium$ phosphate (${\beta}-TCP$) with recombinant human bone morphogenetic protein (rhBMP-2) in vitro. Osteoblast differentiation was induced in confluent cultures by adding 100 nM dexamethasone, 10 mM ${\beta}$-glycerophosphate, 50 mM L-ascorbic acid. The Alizarin red S staining and reverse transcriptase-polymerase chain reaction (RT-PCR) were perfomed to examine the mRNA expression of alkaline phosphatase (ALP), bone sialoprotein (BSP), osteocalcin (OCN), receptor activator for nuclear factor ${\kappa}B$ ligand (RANKL), runt-related transcription factor 2 (RUNX2), collagen-Ⅰ (COL-Ⅰ). There were no significant differences in the osteogenic potentials of DOCs induced from MSCs on ${\beta}-TCP(+/-)$. According to the incubation period, there were significant increasing of Alizadin red S staining in the induction 3 weeks. The mRNA expression of ALP, RUNX2, and RANKL were higher in DOCs/${\beta}-TCP(-)$ than DOCs/${\beta}-TCP(+)$. According to rhBMP-2 concentrations, the mRNA expression of BSP was significantly increased in DOCs/${\beta}-TCP(+)$ compared to that of DOCs/${\beta}-TCP(-)$ on rhBMP 10 ng/ml. Our study presented the ${\beta}-TCP$ will have the possibility that calcium phosphate directly affect the osteoblastic differentiation of the bone marrowderived MSCs.