자연동(自然銅)이 초기 골절 생쥐 정강이뼈의 Re-modeling에 미치는 영향

Effects of Administration of Pyritum on Fracture Healing in Mice

  • 신경민 (동국대학교 한의과대학 침구학교실) ;
  • 정찬영 (동국대학교 한의과대학 침구학교실) ;
  • 황민섭 (동국대학교 한의과대학 침구학교실) ;
  • 이승덕 (동국대학교 한의과대학 침구학교실) ;
  • 김경호 (동국대학교 한의과대학 침구학교실) ;
  • 김갑성 (동국대학교 한의과대학 침구학교실)
  • Shin, Kyung-Min (Department of Acupuncture & Moxibustion, College of Oriental Medicine, Dongguk University) ;
  • Jung, Chan-Yung (Department of Acupuncture & Moxibustion, College of Oriental Medicine, Dongguk University) ;
  • Hwang, Min-Seop (Department of Acupuncture & Moxibustion, College of Oriental Medicine, Dongguk University) ;
  • Lee, Seung-Deok (Department of Acupuncture & Moxibustion, College of Oriental Medicine, Dongguk University) ;
  • Kim, Kyung-Ho (Department of Acupuncture & Moxibustion, College of Oriental Medicine, Dongguk University) ;
  • Kim, Kap-Sung (Department of Acupuncture & Moxibustion, College of Oriental Medicine, Dongguk University)
  • 발행 : 2009.10.20

초록

Objectives : Pyrite is one of the important prescriptions that has been used in oriental medicine for healing of fracture. It is reasonable, therefore, to postulate that native copper affects the process of bone metabolism and bone formation. The purpose of this study is to discover the effect of Pyrite on the healing of tibia fracture. Methods : 1. In vitro test : MG-63 cell in human body and the Pyritum in the ratio of 0.5mg/ml, 1.0mg/ml, 1.5mg/ml, 2.0mg/ml were incubated for 24 hours. After 24 hours, RNA was extracted via trizol reagent (Sigma, USA). In order to understand the activation of osteoblast, the level of OPN mRNA, osteopontin, was measured. 2. In vivo tesgroups normal group, control group and experimental group. Left tibia bones of mice in CON and JT groups were fractured by bone cutters. Pyrite was orally administered to the experimental group. After 14 days, each group's tibia specimen was constructed to observe changes in activation of proinflmmatory cytokines in relation to MIF and IL-6. Also, proliferation of osteoblast and osteopontin were measured via changes in levels of OPN and OPN mRNA. Results : In jn-Titro test, the level of OPN mRNA, osteopontin production was remarkably increased in Pyritum-treated MG-63 cells. In in-vitro test, fractured area in external tibia morphology was increased more in the JT group than that of the CON group. Osteogenesis, endochodrial ossification, and osteoid in fractured area were also increased more in the JT group than that of the CON group. Increase in OPN mRNA, osteopontin level and osteoblast's proliferation were observed. Activation of MIF and IL-6 was confirmed from the fracture region. Conclusions : From the result, development of a new stimulator in healing fracture via pyrite is expected.

키워드

참고문헌

  1. 대한정형외과학회. 정형외과학. 서울 : 최신의학사. 1999 : 557, 568-71, 580-92.
  2. 王燾. 外臺秘要. 서울 : 成輔社. 1975 : 7 49-50.
  3. 한방재활의학과학회. 한방재활의학과학. 서울 : 군자출판사. 2005 : 197-202.
  4. 김익동, 이수영, 김풍택, 박병철, 박희진. 경골골절의 지연 및 불유합증에 대한 임상적 고찰. 대한정형외과학회지. 1984 ; 19(1) : 157-64.
  5. Perumal V, Roberts CS. (ii) Factors contributing to non-union of fractures. Current Orthopaedics. 2007 ; 21(4): 258-61. https://doi.org/10.1016/j.cuor.2007.06.004
  6. 李挻. 新校 編註醫學入門. 서울 : 대성문화사. 1996 : 491, 630.
  7. 趙倍. 聖濟總錄(7卷). 북경 : 人民衛生出版社. 1987 : 460-4.
  8. 南京中醫學院. 諸病源候論校釋. 北京 : 人民衛生出版社. 1982 : 1026-8.
  9. 孫思邈. 備急千金要方. 北京 : 人民衛生出版社. 1982 : 454-5.
  10. 陳師文 等 編. 太平惠民和劑局方. 中國 : 旋風出版社. 1976 : 220-7.
  11. 허준. 동의보감. 서울 : 법인문화사. 1999 : 1522, 1525, 2006.
  12. 이한구, 정문상, 윤강섭. 한국 인삼이 골절치유에 미치는 영향. 대한정형외과학회지. 1984 ; 19(3) : 483-91.
  13. 김진호, 오승환. 동종골의 치유 과정에 홍화씨를 첨가한 히알루론산의 골 형성에 미치는 영향. 원광치의학. 2003 ; 12(1) : 167-87.
  14. 황태경, 오민석, 송태원. 加味身痛逐瘀湯이 흰 쥐의 골절 유합에 미치는 영향. 대전대학교 한의학연구소 한의학논문집. 1999 ; 8(1) : 727-38.
  15. 염익환, 오민석, 송태원. 加味芎歸湯 및 加味芎歸湯加鹿茸이 흰 쥐의 골절 유합에 미치는 영향. 대전대학교 한의학연구소 한의학논문집. 1999 ; 8(1) : 675-87.
  16. 손원택. 順氣活血湯이 흰 쥐의 골절 유합에 미치는 영향. 한방재활의학과학회지. 1999 ; 9(2) : 350-62.
  17. 황지혜. 自然銅의 투여가 인체의 뼈모세포 활성과 생쥐 정강이뼈 골절에 미치는 영향. 대한침구학회지. 2009 ; 26(2) : 159-70.
  18. 설재욱, 김세진, 안혜림, 정일문, 신미숙, 장하정, 최진봉. 自然銅에 對한 文獻的 考察. 대한한의학방제학회지. 2006 ; 14 : 82-104.
  19. 이홍초. 동의광물학. 부산 : 부산대학교 출판부. 1998 : 296-308.
  20. 李時珍. 校訂本 本草綱目. 서울 : 의성당. 1993 : 466-8.
  21. 吳儀洛. 本草從新. 서울 : 행림출판. 1989 : 203.
  22. 黃宮繡. 本草求眞. 台北 : 宏業書局有限公司. 1975 : 244.
  23. Sha Yin, Liu Guodong, Lan Wenzneng, Liu Pingsheng, Zhang Peiqun, Lin Han, Wen Xiaoheng. Study on the changes of metal elemental contents in whole blood and bone during fracture healing. Nuclear Instruments and Methods in Physics Research B. 1996 : 358-61.
  24. 국윤범. 自然銅(산골)의 품질표준화 및 炮製 전후의 성분 비교. 대한본초학회지. 2003 ; 18(1) : 21-31.
  25. 민평기, 서영배. 自然銅의 수치법에 대한 문헌적 고찰. 대전대학교 한의학연구소 한의학논문집. 2001 ; 10(1) : 47-53.
  26. 최호영, 김기동, 우경하. 自然銅 포제의 규격화 연구. 대한본초학회지. 1999 ; 14(1) : 29-35.
  27. 최호영. 시판되는 自然銅 및 煆自然銅의 기원 연구. 대한본초학회지. 1999 ; 14(1) : 23-7.
  28. 윤혜경, 노영수. 藥用 自然銅 중 金屬元素의 흰 쥐에서의 相互作用에 관한 연구. 경희대 약대논문집. 1985 ; 18 : 105-22.
  29. 대한병리학회. 병리학. 서울 : 고문사. 2000 : 1015-7.
  30. Morand EF. New therapeutic target in inflammatory disease :macrophagemigration inhibitory factor. J Internal Medicine. 2003 ; 35 : 419-26.
  31. Abe R, Shimizu T, Ohkawara A, Nishihira J. Enhancement of macrophage migration inhibitory factor (MIF) expression in injured epidermis and cultured fibroblasts. Biochim Biophys Acta. 2000 ; 1500(1) : 1-9. https://doi.org/10.1016/S0925-4439(99)00080-0
  32. Mitchell RA, Metz CN, Peng T, Bucala R. Sustained mitogen-activated protein kinase (MAPK) and cytoplasmic phospholipase A2 activation by macrophage migration inhibitory factor (MIF). Regulatory role in cell proliferation and glucocorticoid action. J Biol Chem. 1999 ; 274(25) : 18100-6. https://doi.org/10.1074/jbc.274.25.18100
  33. Lacey D, Sampey A, Mitchell R, Bucala R, Santos L, Leech M, Morand E. Control of fibroblast-like synoviocyte proliferation by macrophage migration inhibitory factor. Arthritis Rheum. 2003 ; 48(1) : 103-9. https://doi.org/10.1002/art.10733
  34. Onodera S, Nishihira J, Iwabuchi K, Koyama Y, Yoshida K, Tanaka S, Minami A. Macrophage migration inhibitory factor up-regulates matrix metalloproteinase-9 and -13 in rat osteoblasts. Relevance to intracellular signaling pathways. J Biol Chem. 2002 ; 277(10) : 7865-74. https://doi.org/10.1074/jbc.M106020200
  35. Carlene T, Luis AD, Nora GS, Lan LL, Anita HK, Raj M, Brian JN, Leslie JC, David AF. Responsiveness of Human T Lymphocytes to Bacterial superantigens presented by cultured Rheumatoid Arthritis Synoviocytes, Am College Rheumto. 1996 ; 39(1) : 125-36.
  36. Tamiyo K, Taejoon C, Toshimi A, Masashi Y, Nasser N, Dana G, Louis C, Thomas A. Exppression of osteoprotegerin, receptor activator of NF-kB ligand (osteoprotegerin ligand) and related proinflammatory cytokines during fracture healing. J Bone & Mineral Research. 2001 ; 16(6) : 1004-14. https://doi.org/10.1359/jbmr.2001.16.6.1004
  37. Muneaki I, Yoichi E, Kunikazu T, Susan RR, Hisashi K, David TD, Mitsuru E, Akira N and Masaki N. Osteopontin is associated with nuclear factor $\kappa$B gene expression during tail-suspension-induced bone loss. Experimental Cell Research. 2006 ; 312(16) : 3075-83. https://doi.org/10.1016/j.yexcr.2006.06.003
  38. Rousseau F, Saugier P, Le Merrer M, Munnich A, Delezoide AL, Maroteaux P, Bonaventure J, Narcy J and Sanak M. Stop codon FGFR3 mutations in thanatophoric dwarfism type 1. Nat Genet. 1995 ; 10 : 11-2. https://doi.org/10.1038/ng0595-11
  39. Weizmann S, Tong A, Reich A, Genina O, Yayon O and Monsonego-Ornan E. FGF upregulates osteopontin in epiphyseal growth plate chondrocytes: Implications for endochondral ossification. Matrix Biology. 2005 ; 24(8) : 520-9. https://doi.org/10.1016/j.matbio.2005.07.003
  40. Gordjestani M, Dermaut L, De Ridder L, Thierens H, De Waele P, De Leersnijder WW and Bosman F. Osteopontin and bone metabolism: a histology and scintigraphy study in rats. International Journal of Oral and Maxillofacial Surgery. 2005 ; 34(7) : 794-9. https://doi.org/10.1016/j.ijom.2005.04.013
  41. Kasugai S, Todescan R, Nagata T, Yao KL, Butler WT and Sadek J. Expression of bone matrix proteins associated with mineralized tissue formation by adult rat bone marrow cells in vitro: inductive effects or dexamethasone on the osteoblast phenotype. J Cell Physiol. 2003 ; 147 : 111-20. https://doi.org/10.1002/jcp.1041470115
  42. Muneaki I, Yoichi E, Kunikazu T, Susan RR, Hisashi K, David TD, Mitsuru E, Akira N and Masaki N. Osteopontin is associated with nuclear factor $\kappa$B gene expression during tail-suspension-induced bone loss. Experimental Cell Research. 2006 ; 312(16) : 3075-83. https://doi.org/10.1016/j.yexcr.2006.06.003