• 제목/요약/키워드: Human osteoblast

검색결과 175건 처리시간 0.025초

MC3T3-E1 조골세포주와 RAW 264.7 파골세포주에서 길경을 함유한 한약재 추출물의 항골다공증 효과 (Anti-osteoporotic Activity of Mixed Herbal Extract Involving Platycodon Grandiflorum Root in Osteoblastic MC3T3-E1 and Osteoclastic RAW 264.7 Cells)

  • 정재인;이현숙;김형준;김용민;김수현;유동진;김은지
    • 대한한방부인과학회지
    • /
    • 제31권4호
    • /
    • pp.1-15
    • /
    • 2018
  • 목 적: 본 연구는 길경(Platycodon grandiflorum root)를 함유한 복합 한약재 추출물(ExMH-PGR)의 골다공증 예방 및 치료효과를 알아보기 위해 MC3T3-E1 조골세포주와 RAW 264.7 파골세포주를 이용하여 in vitro 수준에서 검증하였다. 방 법: 배양액에 다양한 농도의 ExMH-PGR를 첨가하여 MC3T3-E1 세포와 RAW 264.7 세포의 세포증식을 비교하였다. MC3T3-E1 세포에서 Alkaline phosphatase (ALP) 활성, 콜라겐 합성, 오스테올칼신 생성, 무기질 축적을 분석하였다. RAW 264.7 세포에서 Tartrate-resistant acid phosphatase (TRAP) 활성과 actin ring 형성 정도를 분석하였다. 결 과: ExMH-PGR는 $25{\mu}g/mL$ 농도까지 유의한 수준으로 ALP 활성, 콜라겐 합성, 그리고 오스테올칼신 형성을 증가시켰다. $50{\sim}200{\mu}g/mL$의 ExMH-PGR은 TRAP 활성과 actin ring 형성을 유의하게 억제했다. 결 론: ExMH-PGR은 조골세포의 활성을 촉진하고 파골세포의 활성을 억제하는 효과가 있어 골다공증 치료에 유용할 가능성이 있다.

나트륨염에 의한 비양론적 인회석의 특성 및 SaOS-2 세포반응에 미치는 영향에 관한 연구 (Variation of Characteristics of Nonstoichiometric Apatite Induced by Sodium Salt)

  • 정재영;한주연;최선미;이우걸
    • 공업화학
    • /
    • 제19권3호
    • /
    • pp.326-331
    • /
    • 2008
  • 본 연구의 목표는 고체기질 표면에 Na 이온이 포함된 비양론적 인회석 코팅을 형성하는 기술을 개발하는 것이다. 나트륨염 농도가 다른 조건에서 형성된 인회석 코팅은 Na 이온이 존재하는 경우 표면 morphology, 화학적 상태 그리고 Ca/P 비율 등에 상당한 영향을 미치는 것으로 나타났다. 이러한 성질들의 변화는 Na 이온의 농도가 0.01 mM로 증가될 때까지 지속되었다. 칼슘과 인의 비율은 2.18에서 2.03 정도까지 변화되었으며, 이는 합성된 비양론적 인회석이 칼슘이 풍부한 조성을 가지고 있음을 나타내고 있다. 모든 시료들의 구조는 저결정성 구조를 갖는 것으로 나타났다. 인회석 코팅층 내에 Na 이온이 존재하는 경우, 인간 조골세포의 세포주인 SaOS-2 세포의 부착이 상당히 증가하였다. 그러나 이 세포들의 증식은 Na 이온 농도가 증가함에 따라 감소하는 것으로 나타났다. 이러한 상반된 세포반응은 SaOS-2 세포와 인회석 표면간의 작용이 세포신호전달을 포함한 세포내 기전에 상당한 변화를 초래했기 때문일 것으로 사료된다.

고용량의 Dexamethasone 존재하에서 골막기원세포에서 발현되는 혈관신생인자의 평가 (EVALUATION OF ANGIOGENIC PHENOTYPES IN CULTURED HUMAN PERIOSTEAL-DERIVED CELLS UNDER HIGH-DOSE DEXAMETHASONE)

  • 박봉욱;최문정;류영모;이성균;하영술;김덕룡;조영철;김종렬;변준호
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제30권3호
    • /
    • pp.217-224
    • /
    • 2008
  • Angiogenesis plays an important role in bone development and postnatal bone fracture repair. Vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptors (VEGFRs) have been thought to be primarily involved in promoting angiogenesis. It is well known that VEGF and its receptors have been reported to play an important role in the regulation of the interaction between angiogenesis and osteogenesis during bone repair processes. Dexamethasone, a potent synthetic glucocorticoid, promotes phenotype markers of osteoblast differentiation, such as ALP and osteocalcin. It stimulates in vitro osteogenesis of human bone marrow osteogenic stromal cells. Dexamethasone has been reported to suppress VEGF gene expression in some cells. However, our previous study demonstrated VEGF quantification increased in a time-dependent manner in periosteal-derived osteogenesis under dexamethasone. So, the purpose of this study was to examine the angiogenic phenotypes in cultured human periosteal-derived cells under high-dose dexamethasone. Periosteal-derived cells were cultured using a technique previously described. After passage 3, the periosteal-derived cells were further cultured for 28 days in an osteogenic inductive culture medium containing ascorbic acid, ${\beta}$-glycerophosphate and high-dose dexamethasone, We evaluated the expression of VEGF isoforms, VEGFR-1, VEGFR-2, and neuropilin-1, ALL VEGF isoforms ($VEGF_{121},\;VEGF_{165},\;VEGF_{189}$, and $VEGF_{206}$) expression was observed by RT-PCR analysis. VEGFR-1, VEGFR-2 and neuropilin-1 expression increased up to day 14, particularly during the early stage of mineralization. Our results suggest the involvement of direct VEGFs/VEGFRs system on periosteal-derived cells during early mineralization phase under high-dose of dexamethasone. These also suggest that VEGF might act as an autocrine growth molecule during osteoblastic differentiation of cultured human periosteal-derived cells.

($IL-1{\beta}$), PDGF-BB 그리고 $TGF-{\beta}$가 사람 배양 치주인대 섬유모세포의 PDLs17 mRNA의 발현에 미치는 영향 (The Effect of Interleukin $1-{\beta}$, Platelet Derived Growth Factor-BB and Transforming Growth $Factor-{\beta}$ on the expression of PDLs17 mRNA in the Cultured Human Periodontal Ligament Fibroblasts)

  • 임기정;한경윤;김병옥;임창엽;박주철
    • Journal of Periodontal and Implant Science
    • /
    • 제31권4호
    • /
    • pp.787-801
    • /
    • 2001
  • The molecular mechanisms control the function of PDL(periodonta1 ligament) cells and/or fibroblasts remain unclear. PDLsl7, PDL-specific gene, had previousely identified the cDNA for a novel protein from cultured PDL fibroblasts using subtraction hybridization between gingival fibroblasts and PDL fibroblasts. The purpose of this study was to determine the regulation by growth factors and cytokines on PDLsl7 gene expression in cultured human periodontal ligament cells and observe the immunohistochemical localization of PDLsl7 protein in various tissues of mouse. Primary PDL fibroblasts isolated by scraping the root of the extracted human mandibular third molars. The cells were incubated with various concentration of human recombinant $IL-1{\beta}$, PDGF-BB and TGF\;${\beta}$ for 48h nd 2 weeks. At each time point total RNA was extracted and the levels of transcription ere assessed by reverse transcription-polymerase chain reaction (RT-PCR assay). polyclonal antiserum raised against PDLsl7 peptides, CLSVSYNRSYQINE and SEAVHETDLHDGC, were made, and stained the tooth, periodontium, developing bone, bone marrow and mid-palatal suture of the mouse. The results were as follows. 1. PDLsl7 mRNA levels were increased in response to PDGF (10ng/ml) and $TGF\;{\beta}$(20ng/ml) after treatment of the $IL-1{\beta}$, PDGF-BB and $TGF{\beta}$for 48 h. 2. PDLsl7 was up-regulated only by $TGF{\beta}$(20 ng/ml) after treatment of the $IL-1{\beta}$, PDGF-BB and $TGF\;{\beta}$ for 2 weeks and unchanged by the other stimulants. 3. PDLsl7 was a novel protein coding the 142 amino acid peptides in the ORF and the nucleotide sequences of the obtained cDNA from RT-PCR was exactly same as the nucleotides of the database. 4. Immunohistochemical analysis showed that PDLsl7 is preferentially expressed in the PDL, differentiating osteoblast-like cells and stromal cells of the bone marrow in the adult mouse. 5. The expression of PDLsl7 protein was barely detectable in gingival fibroblasts, hematopoetic cells of the bone marrow and mature osteocytes of the alveolar bone. These results suggest that PDLsl7 might upregulated by PDGF-BB or $TGF{\beta}$ and acts at the initial stage of differentiation when the undifferentiated mesenchymal cells in the bone marrow and PDL differentiate into multiple cell types. However, more research needs to be performed to gain a better understanding of the exact function of PDLsl7 during the differentiation of bone marrow mesenchymal and PDL cells.

  • PDF

A Study on Anti-Bone Resorption & Osteoporosis by Taeyoungion-Jahage Extracts

  • ;;;;;신정식
    • 대한한방부인과학회지
    • /
    • 제15권4호
    • /
    • pp.61-75
    • /
    • 2002
  • 유전자 재조합으로 제조한 사람 $interleukin-1{\beta}$ $(rhIL-1{\beta})$는 생쥐의 calvarial 골세포계에서 분리한 골아세포에 여러 가지 조절기능을 갖는 것으로 알려져 있다. 본 연구에서 $rhIL-1{\beta}$가 농도의존적으로 골세포에 영향을 주는지 해명하기 위하여 배양된 골아세포의 세포증식과 prostaglandin $E_2$합성 그리고 plasminogen activator활성에 대한 영향을 검토한 결과 이들을 촉진하였다. 그러나 비타민D에 따라 반응하는 골아세포의 특징으로 알려진 osteocalcin생합성과 alkaine phosphatase활성의 유도생성은 $rhIL-1{\beta}$에 의해 오히려 길항적이었다. 이러한 결과는 골세포대사의 병리학적인 조절과정에서 $IL-1{\beta}$가 골다공증의 병리학적 역할을 규명하는 새로운 결과이다. $IL-1{\beta}$에 의한 골흡수현상이 생쥐의 calvarial골세포에서 calcitonin처리로 크게 억제되어, 결과적으로 이러한 결과는 $IL-1{\beta}$에 의해 유발되는 골재흡수란 osteoclast에 의한다는 사실을 시사하였다. 한편, 한방에서 골다공증치료와 예방에 사용되는 대영전-자하거추출물의 기능을 해명하기 위하여, $IL-1{\beta}$-유발 $PGE_2$합성만을 특이적으로 저해하였다. 또한, 대영전-자하거 extract을 1시간 동안 여러 가지 농도로 전처리하고 다음으로 $PGE_2$-유도시약을 처리한 결과, $PGE_2$합성을 억제하였으며 동시에 $IL-1{\beta}$에 의해 유도된 plasminogen 의존적인 fibrinolysis을 억제하는 보호효과가 인정되었다. 한편, calcitonin처리가 $IL-1{\beta}$-촉진 골재흡수에 대한 저해활성을 보였으며 이러한 결과들은 calcitonin과 대영전-자하거 extract이 osteoclast매개성 골재흡수의 억제에 핵심적인 역할을 함을 시사하며 한방치료제로서의 근거를 제시하였다고 사료된다.

  • PDF

사람태아골모세포에 대한 방사선조사 냉동 동종골의 골형성 유도효과 (Effects of irradiated frozen allogenic bone on bone formation in human fetal osteoblasts)

  • 홍지연;정성원;엄유정;채경준;정의원;김창성;최성호;김종관
    • Journal of Periodontal and Implant Science
    • /
    • 제36권3호
    • /
    • pp.745-755
    • /
    • 2006
  • The purpose of this study was to investigate the effects of irradiated frozen allogenic bone(IFAB) on the cell proliferation and differentiation of human fetal osteoblasts. Human fetal osteoblasts(hFOB1) were cultured to examine the cellular proliferation for 3 days and 5 days with $1mg/m{\ell}$, $100{\mu}g/m{\ell}$, $10{\mu}g/m{\ell}$, $1{\mu}g/m{\ell}$, $100ng/m{\ell}$, $10ng/m{\ell}$, $1ng/m{\ell}$ of IFAB, and to compare the ALP synthesis to control groups for 3 days with DMEM/F-12 1:1 Mixture and $1mg/m{\ell}$, $100{\mu}g/m{\ell}$, $10{\mu}g/m{\ell}$, $1{\mu}g/m{\ell}$, $100ng/m{\ell}$, $10ng/m{\ell}$, $1ng/m{\ell}$ of IFAB. To compare the calcium accumulation, hFOBl cultured for 23 days were quantified and photographed. The cellular proliferation of hFOBls treated with IFAB was increased at 5 days to control(p<0.05). The activity of ALP in hFOBls treated with $100ng/m{\ell}$ IFAB was significantly increased at 5 days(p<0.05). A quantified calcium accumulation in hFOBl was significantly increased at $100ng/m{\ell}$, $10ng/m{\ell}$ of IFAB(p<0.05). In the present study, we found that IFAB playa important role of bone formation in the early stage. There was considered that IFAB could be used in the bone graft material.

Static magnetic fields promote osteoblastic/cementoblastic differentiation in osteoblasts, cementoblasts, and periodontal ligament cells

  • Kim, Eun-Cheol;Park, Jaesuh;Kwon, Il Keun;Lee, Suk-Won;Park, Su-Jung;Ahn, Su-Jin
    • Journal of Periodontal and Implant Science
    • /
    • 제47권5호
    • /
    • pp.273-291
    • /
    • 2017
  • Purpose: Although static magnetic fields (SMFs) have been used in dental prostheses and osseointegrated implants, their biological effects on osteoblastic and cementoblastic differentiation in cells involved in periodontal regeneration remain unknown. This study was undertaken to investigate the effects of SMFs (15 mT) on the osteoblastic and cementoblastic differentiation of human osteoblasts, periodontal ligament cells (PDLCs), and cementoblasts, and to explore the possible mechanisms underlying these effects. Methods: Differentiation was evaluated by measuring alkaline phosphatase (ALP) activity, mineralized nodule formation based on Alizarin red staining, calcium content, and the expression of marker mRNAs assessed by reverse transcription polymerase chain reaction (RT-PCR). Signaling pathways were analyzed by western blotting and immunocytochemistry. Results: The activities of the early marker ALP and the late markers matrix mineralization and calcium content, as well as osteoblast- and cementoblast-specific gene expression in osteoblasts, PDLCs, and cementoblasts were enhanced. SMFs upregulated the expression of Wnt proteins, and increased the phosphorylation of glycogen synthase $kinase-3{\beta}$ ($GSK-3{\beta}$) and total ${\beta}-catenin$ protein expression. Furthermore, p38 and c-Jun N-terminal kinase (JNK) mitogen-activated protein kinase (MAPK), and nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$) pathways were activated. Conclusions: SMF treatment enhanced osteoblastic and/or cementoblastic differentiation in osteoblasts, cementoblasts, and PDLCs. These findings provide a molecular basis for the beneficial osteogenic and/or cementogenic effect of SMFs, which could have potential in stimulating bone or cementum formation during bone regeneration and in patients with periodontal disease.

Functional analysis of Bombyx mori Decapentaplegic gene for bone differentiation in a mammalian cell

  • Park, Seung-Won;Goo, Tae-Won;Choi, Gwang-Ho;Kang, Seok-Woo;Kim, Sung-Wan;Kim, Seong-Ryul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제27권1호
    • /
    • pp.159-165
    • /
    • 2013
  • Bone morphogenetic proteins (BMPs) belong to the transforming growth factor (TGF-${\beta}$) superfamily and are involved in osteoblastic differentiation. The largest TGF-${\beta}$ superfamily subgroup shares genetic homology with human BMPs (hBMPs) and silkworm decapentaplegic (dpp). In addition, hBMPs are functionally interchangeable with Drosophila dpp. Bombyx mori dpp may induce bone formation in mammalian cells. To test this hypothesis, we synthesized the 1,285-base pairs cDNA of full-length B. mori dpp using total RNAs obtained from the fat body of 3-day-old of the $5^{th}$ instar larvae and cloned the cDNA into the pCEP4 mammalian expression vector. Next, B. mori dpp was expressed in C3H10T1/2 cells. The target cells transfected with the pCEP4-Bm dpp plasmid showed biological functions similar to those of osteogenic differentiation induction growth factors such as hBMPs. We determined the relative mRNA expression rates of Runt-related transcription factor 2 (RUNX2), osterix, osteocalcin, and alkaline phosphatase (ALP) to validate the osteoblast-specific differentiation effects of B. mori dpp by performing quantitative real-time RT-PCR. Interestingly, mRNA expression levels of the 3 marker genes except RUNX2, in cells expressing B. mori dpp were much higher than those in control cells and C3H10T1/2 cells transfected with pCEP4. These results suggested that B. mori dpp signaling regulates osterix expression during osteogenic differentiation via RUNX2-independent mechanisms.

PMMA를 이용한 다공질 β-TCP 골충진제 제조 및 생체적합성 평가 (Fabrication of Porous β-TCP Bone Graft Substitutes Using PMMA Powder and their Biocompatibility Study)

  • 송호연;윤민호;김영희;민영기;양훈모;이병택
    • 한국재료학회지
    • /
    • 제17권6호
    • /
    • pp.318-322
    • /
    • 2007
  • Porous ${\beta}-tricalcium$ phosphate $({\beta}-TCP)$ bioceramic was fabricated by pressureless sintering using commercial HAp and different volume percentages of PMMA powders (30-60 vol.%). The range of spherical pore size was about $200-250\;{\mu}m$ in diameter. By increasing the PMMA content, the number of pores and their morphology were dramatically changed as well as decreased the material properties. In case of using 60 vol.% PMMA content, network-type pores were found, due to the necking of the PMMA powders. The values of relative density, elastic modulus, bending strength and hardness of the 60 vol.% PMMA content sample, sintered at $1500^{\circ}C$, were about 46%, 22.2 GPa, 5MPa and 182 Hv respectively. Human osteoblast-like MG-63 cells and osteoclast-like Raw 264.7 cells were well grown and fully covered all of the porous ${\beta}-TCP$ bodies sintered at $1500^{\circ}C$.

Wettability and cellular response of UV light irradiated anodized titanium surface

  • Park, Kyou-Hwa;Koak, Jai-Young;Kim, Seong-Kyun;Heo, Seong-Joo
    • The Journal of Advanced Prosthodontics
    • /
    • 제3권2호
    • /
    • pp.63-68
    • /
    • 2011
  • PURPOSE. The object of this study was to investigate the effect of UV irradiation (by a general commercial UV sterilizer) on anodized titanium surface. Surface characteristics and cellular responses were compared between anodized titanium discs and UV irradiated anodized titanium discs. MATERIALS AND METHODS. Titanium discs were anodized and divided into the following groups: Group 1, anodized (control), and Goup 2, anodized and UV irradiated for 24 hours. The surface characteristics including contact angle, roughness, phase of oxide layer, and chemical elemental composition were inspected. The osteoblast-like human osteogenic sarcoma (HOS) cells were cultured on control and test group discs. Initial cellular attachment, MTS-based cell proliferation assay, and ALP synthesis level were compared between the two groups for the evaluation of cellular response. RESULTS. After UV irradiation, the contact angle decreased significantly (P<.001). The surface roughness and phase of oxide layer did not show definite changes, but carbon showed a considerable decrease after UV irradiation. Initial cell attachment was increased in test group (P=.004). Cells cultured on test group samples proliferated more actively (P=.009 at day 2, 5, and 7) and the ALP synthesis also increased in cells cultured on the test group (P=.016 at day 3, P=.009 at day 7 and 14). CONCLUSION. UV irradiation induced enhanced wettability, and increased initial cellular responses of HOS cells on anodized titanium surface.