• Title/Summary/Keyword: Human melanocytes

검색결과 63건 처리시간 0.035초

Kojic Acid, a Potential Inhibitor of NF-$textsc{k}$B Activation in Transfectant Human HaCaT and SCC-13 Cells

  • Moon, Ki-Young;Ahn, Kwang-Seok;Lee, Jin-seon;Kim, Yeong-Shik
    • Archives of Pharmacal Research
    • /
    • 제24권4호
    • /
    • pp.307-311
    • /
    • 2001
  • The activation of NF-$\kappa$B induced by kojic Acid, an inhibitor of tyrosinase for biosynthesis of melanin in melanocytes, was investigated in human transfectant HaCaT and SCC-13 cells. These two keratinocyte cell lines transfected with pNF-$\kappa$B-SEAP-NPT plasmid were used to determine the activation of NF-$\kappa$B. Transfectant cells release the secretory alkaline phosphatase (SEAP) as a transcription reporter in response to the NF-$\kappa$B activity and contain the neomycin phosphotransferase (NPT) gene for the dominant selective marker of geneticin resistance. NF-$\kappa$B activation was measured in the SEAP reporter gene assay using a fluorescence detection method. Kojic Acid showed the inhibition of cellular NF-$\kappa$B activity in both human keratinocyte transfectants. It could also downregulate the ultraviolet ray (UVR)-induced activation of NF-$\kappa$B expression in transfectant HaCaT cells. Moreover, the inhibitory activity of kojic Acid in transfectant HaCaT cells was found to be more potent than known antioxidants, e.g., vitamin C and N~acetyl-L-cysteine. These results indicate that kojic Acid is a potential inhibitor of NF-$\kappa$B activation in human keratinocytes, and suggest the hypothesis that NF-$\kappa$B activation may be involved in kojic Acid induced anti-melanogenic effect.

  • PDF

Effects of Vaniltic Acid on the Cell Viability and Melanogenesis in Cultured Human Skin Melanoma Cells Damaged by ROS-Induced Cytotoxicity

  • ;;유선미
    • 대한의생명과학회지
    • /
    • 제13권4호
    • /
    • pp.349-354
    • /
    • 2007
  • The purpose of this study was to examine the effect of vanillic acid on the cell viability and melanogenesis in melanocytes damaged by reactive oxygen species (ROS). The human skin melanoma cells (SK-MEL-3) were cultured with various concentrations of hydrogen peroxide $(H_2O_2)$. The cell viability for $H_2O_2$-induced cytotoxicity or vanillic acid against $H_2O_2$ was measured by XTT assay in these cultures. For the effect of vanillic acid on the melanogenesis, the tyrosinase inhibitory activity was measured by colorimetric assay at a wavelength of 490 nm, and melanin synthesis activity were assessed after cells were cultured in the media with or without various cencentrations of vanillic acid. In this study, $H_2O_2$ decreased cell viability dose- and time-dependent manners and $XTT_{50}$ was determined at a concentration of 80 ${\mu}M$, $H_2O_2$. Vanillic acid increased the cell viability dose dependently in human skin melanoma cells damaged by $H_2O_2$-induced cytotoxicity. In the tyrosinase inhibitory activity, vanillic acid supresssed tyrosinase activity in dosedependent manner, and also decreased significantly melanin synthesis activity compared with $H_2O_2$-treated group. From these results. It is suggested that $H_2O_2$-mediated cytotoxicity was highly by the toxic criteria of Borenfreund and Puerner and also, vanillic acid has the protective effect on ROS-induced cytotoxicity and melanogenesis in these cultures.

  • PDF

(-)-Epigallocatechin-3-gallate and Hinokitiol Reduce Melanin Synthesis via Decreased MITF Production

  • Kim, Dong-Seok;Park, Seo-Hyoung;Kwon, Sun-Bang;Li, Kap-Sok;Youn, Sang-Woong;Park, Kyoung-Chan
    • Archives of Pharmacal Research
    • /
    • 제27권3호
    • /
    • pp.334-339
    • /
    • 2004
  • In this study, the effects of (-)-epigallocatechin-3-gallate (EGCG) and/or hinokitiol (${\beta}-thujaplicin$) on melanogenesis were investigated. Our results showed that both EGCG and hinokitiol significantly inhibited melanin synthesis in a concentration-dependent manner, and that their hypopigmenting effects were stronger than that of kojic acid, which is known to inhibit melanin formation in melanocytes and melanoma cells. Interestingly, EGCG did not show any additive hypopigmenting effect in combination with kojic acid, though EGCG did show a synergistic effect in combination with hinokitiol. Several reports indicate that the activation of extracellular signal-regulated kinase (ERK) induces microphthalmia-associated transcription factor (MITF) degradation. Accordingly, the effects of EGCG and hinokitiol on the ERK signaling pathway were examined. EGCG and hinokitiol induced neither ERK activation nor MITF degradation. On the other hand, both EGCG and hinokitiol reduced the protein levels of MITF and of tyrosinase, the rate limiting melanogenic enzyme, whereas kojic acid had no effect. In addition, hinokitiol strongly downregulated the activity of tyrosinase, whereas EGCG or kojic acid had only a little effect. These results show that both EGCG and hinokitiol reduce MITF production, and suggest that reduced tyrosinase activity by hinokitiol explains their synergistic effect on melanogenesis.

Neuroimmunological Mechanism of Pruritus in Atopic Dermatitis Focused on the Role of Serotonin

  • Kim, Kwangmi
    • Biomolecules & Therapeutics
    • /
    • 제20권6호
    • /
    • pp.506-512
    • /
    • 2012
  • Although pruritus is the critical symptom of atopic dermatitis that profoundly affect the patients' quality of life, controlling and management of prurirtus still remains as unmet needs mainly due to the distinctive multifactorial pathogenesis of pruritus in atopic dermatitis. Based on the distinct feature of atopic dermatitis that psychological state of patients substantially influence on the intensity of pruritus, various psychotropic drugs have been used in clinic to relieve pruritus of atopic dermatitis patients. Only several psychotropic drugs were reported to show real antipruritic effects in atopic dermatitis patients including naltrexone, doxepin, trimipramine, bupropion, tandospirone, paroxetine and fluvoxamine. However, the precise mechanisms of antipruritic effect of these psychotropic drugs are still unclear. In human skin, serotonin receptors and serotonin transporter protein are expressed on skin cells such as keratinocytes, melanocytes, dermal fibroblasts, mast cells, T cells, natural killer cells, langerhans cells, and sensory nerve endings. It is noteworthy that serotonergic drugs, as well as serotonin itself, showed immune-modulating effect. Fenfluramine, fluoxetine and 2, 5-dimethoxy-4-iodoamphetamine significantly decreased lymphocyte proliferation. It is still questionable whether these serotonergic drugs exert the immunosuppressive effects via serotonin receptor or serotonin transporter. All these clinical and experimental reports suggest the possibility that antipruritic effects of selective serotonin reuptake inhibitors in atopic dermatitis patients might be at least partly due to their suppressive effect on T cells. Further studies should be conducted to elucidate the precise mechanism of neuroimmunological interaction in pruritus of atopic dermatitis.

바이오 안테나인 일차 섬모 조절을 통한 피부 미백 기술 (Primary Cilia, A Novel Bio-target to Regulate Skin Pigmentation)

  • 최현정;박녹현;김지현;조동형;이태룡;김형준
    • 대한화장품학회지
    • /
    • 제44권1호
    • /
    • pp.73-79
    • /
    • 2018
  • 일차 섬모(primary cilia)는 세포에서 안테나처럼 돌출되어 나온 기관인데, 외부 자극에 반응할 수 있는 각종 수용체와 채널, 신호 전달 인자들을 가지고 있다. 피부는 자외선, 온도, 습도, 중력, 장력 등 외부 환경에 반응하여 멜라닌이나 콜라겐을 만들고 피부 장벽을 형성한다. 피부에서는 일차 섬모가 없으면 헤어의 생성이나 각질의 분화가 억제된다는 보고가 있다. 또한 피부 색소 생성과 관련하여서는 일차 섬모가 sonic hedgehog-smoothened-GLI2 신호 전달에 의해 활성화되면 멜라닌 생성이 억제된다는 것이 알려져 있다. 피부가 자외선을 받으면 멜라닌 생성 호르몬의 양이 증가하고 멜라닌 생성 호르몬은 멜라닌 생성 세포 내 cAMP의 양을 증가시켜 멜라닌 생성 효소의 발현을 높인다. 이에 멜라닌 생성 호르몬과 세포 내 cAMP의 양을 증가시키는 물질을 처리하여 멜라닌 생성을 높였을 때 일차 섬모의 변화를 확인한 결과 일차 섬모가 감소하는 것을 확인하였다. 또한 기존 미백 원료인 유용성 감초 추출물(an ethanol extract of Glycyrrhiza glabra (EGG) root)과 Melasolv (3,4,5-trimethoxy cinnamate thymol ester (TCTE))가 일차 섬모의 발현을 증가시키고 멜라닌 생성 효소인 tyrosinase의 발현을 억제함을 확인할 수 있었다. 따라서 일차 섬모를 조절할 수 있다면 피부 색소 침착을 효과적으로 조절할 수 있을 것이다.

Anti-skin Aging Potential of Alcoholic Extract of Phragmites communis Rhizome

  • Ha, Chang Woo;Kim, Sung Hyeok;Lee, Sung Ryul;Jang, Sohee;Namkoong, Seung;Hong, Sungsil;Lim, Hyosun;Kim, Youn Kyu;Sohn, Eun-Hwa
    • 한국자원식물학회지
    • /
    • 제33권6호
    • /
    • pp.604-614
    • /
    • 2020
  • Chronological aging and photoaging affect appearance, causing wrinkles, pigmentation, texture changes, and loss of elasticity in the skin. Phragmites communis is a tall perennial herb used for its high nutritional value and for medicinal purposes, such as relief from fever and vomiting and facilitation of diuresis. In this study, we investigated the effects of ethanol extract of P. communis rhizome (PCE) on skin aging. The total flavonoid and total phenolic content in PCE were 2.92 ± 0.007 ㎍ of quercetin equivalents (QE) and 231.8 ± 0.001 ㎍ of gallic acid equivalents (GAE) per 100 mg of dried extract (n = 3). The half-maximal inhibitory concentration (IC50) values of PCE for 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) and hydrogen peroxide scavenging activities were 0.96 and 0.97 mg/mL, respectively. PCE showed inhibitory effects on tyrosinase when L-tyrosine (IC50 = 1.25 mg/mL) and L-3,4-dihydroxyphenylalanine (IC50 = 0.92 mg/mL) were used as substrates. PCE treatment up to 200 ㎍/mL for 24 h did not cause any significant cytotoxicity in B16F10 melanocytes, human dermal fibroblasts (HDFs), and HaCaT keratinocytes. In B16F10 melanocytes, PCE (25 and 50 ㎍ /mL) inhibited melanin production and cellular tyrosinase activity after challenge with α-melanocyte-stimulating hormone (α-MSH; p < 0.05). In HDFs, PCE suppressed the mRNA expression of matrix metalloproteinase-1 (MMP-1) and reduced the activity of elastase (p < 0.05). In addition, ultraviolet B (UVB)-mediated downregulation of hyaluronic acid synthase-2 gene expression in HaCaT keratinocytes was also effectively suppressed by PCE treatment. Overall, our results showed that PCE has potential anti-skin aging activity associated with the suppression of hyperpigmentation, wrinkle formation, and reduction in dryness. PCE is a promising candidate for the development of an anti-skin aging cosmetic ingredient.

겨우살이 추출물의 미백 효과 (Depigmenting Effects of Mistletoe (Viscum album var. coloratum) Extracts)

  • 하영술;김은지;구영민;길영숙;신승미;김상곤;강하은;윤태진
    • 생명과학회지
    • /
    • 제32권5호
    • /
    • pp.355-361
    • /
    • 2022
  • 멜라닌 색소는 피부색의 주요 원인이다. 멜라닌 색소는 멜라닌 세포에서 생성된 다음 각질 세포로 전달되어 결국 피부 표면에 다양한 색상을 부여한다. 많은 탈색제 및 피부 미백제가 개발되었지만, 색소 침착을 감소시키기 위한 재료에 대한 수요는 여전히 증가하고 있다. 본 연구에서 천연 화합물을 사용하여 탈색 및 피부 미백에 대한 재료를 찾으려고 시도한 결과 겨우살이(Viscum album var. coloratum) 추출물이 색소 침착을 억제할 수 있음을 발견하였다. 인간 멜라닌 세포에 겨우살이 추출물(mistletoe extracts, ME)을 처리했을 때 색소 침착이 극적으로 감소하였다. 프로모터 리포터 분석은 ME 처리가 HM3KO 흑색종 세포에서 microphthalmia-associated transcription factor (MITF), melanophilin (MLPH), tyrosinase related protein 2 (TRP-2), and tyrosinase (TYR) 유전자의 전사를 억제한다는 것을 보여주었다. 일관되게 ME는 MITF, TRP-1 및 TYR과 같은 색소 침착 관련 분자의 단백질 수준을 감소시켰다. 또한 ME는 cAMP Responsive Element Binding Protein (CREB), AKT 및 ERK의 인산화를 감소시켰다. 이러한 결과는 ME가 색소 침착과 관련된 세포 내 신호 전달의 조절을 통해 멜라닌 생성을 억제한다는 것을 시사한다. 끝으로 ME는 색소 침착에 대한 생체 내 평가 모델인 제브라피쉬 배아의 멜라닌 생성을 현저하게 억제하였다.

Alleviation of Ultraviolet-B Radiation-Induced Photoaging by a TNFR Antagonistic Peptide, TNFR2-SKE

  • Lee, Kyoung-Jin;Park, Kyeong Han;Hahn, Jang-Hee
    • Molecules and Cells
    • /
    • 제42권2호
    • /
    • pp.151-160
    • /
    • 2019
  • Ultraviolet (UV) radiation of the sunlight, especially UVA and UVB, is the primary environmental cause of skin damage, including topical inflammation, premature skin aging, and skin cancer. Previous reports show that activation of nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$) in human skin fibroblasts and keratinocytes after UV exposure induces the expression and release of proinflammatory cytokines, such as interleukin-1 (IL-1) and tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$), and subsequently leads to the production of matrix metalloproteases (MMPs) and growth factor basic fibroblast growth factor (bFGF). Here, we demonstrated that TNFR2-SKEE and TNFR2-SKE, oligopeptides from TNF receptor-associated factor 2 (TRAF2)-binding site of TNF receptor 2 (TNFR2), strongly inhibited the interaction of TNFR1 as well as TNFR2 with TRAF2. In particular, TNFR2-SKE suppressed UVB- or $TNF-{\alpha}$-induced nuclear translocalization of activated $NF-{\kappa}B$ in mouse fibroblasts. It decreased the expression of bFGF, MMPs, and COX2, which were upregulated by $TNF-{\alpha}$, and increased procollagen production, which was reduced by $TNF-{\alpha}$. Furthermore, TNFR2-SKE inhibited the UVB-induced proliferation of keratinocytes and melanocytes in the mouse skin and the infiltration of immune cells into inflamed tissues. These results suggest that TNFR2-SKE may possess the clinical potency to alleviate UV-induced photoaging in human skin.

2'-푸코실락토오스의 자가포식을 통한 멜라닌 감소 연구 (A Study on Melanin Reduction through Autophagy by 2'-Fucosyllactose)

  • 정소영;유한준;허효진;이소민;;차병선;;이상훈;빈범호;이미기;곽병문
    • 대한화장품학회지
    • /
    • 제48권2호
    • /
    • pp.105-112
    • /
    • 2022
  • 2'-fucosyllactose (2'-FL)는 사람의 모유에 가장 많이 존재하는 올리고당(human milk oligosaccharides, HMOs)으로, 장내 유용 미생물의 성장을 촉진시키고 알레르기, 염증 반응을 완화시키는 것에 도움을 준다. 다양한 긍정적 기능을 가진 2'-FL의 미백 화장품 소재로써의 가능성을 확인하고자, 본 연구를 통해 멜라닌 생성 저해 효능 및 자가포식 유도 가능성을 검토하였다. 인간 유래 멜라닌 생성 세포로 알려진 MNT-1 세포에서 독성 실험을 진행하여 40 g/L 이하에서 세포독성이 없음을 확인하였고, 동일 세포에서 20 g/L 농도로 7 일간 처리하여 멜라닌 생성량을 분석한 결과, 40% 멜라닌 생성 감소를 확인하였다. 멜라닌 생성 관련 인자 TYR 및 TYRP1의 단백질 발현량을 western blot 법을 이용하여 분석한 결과, 2'-FL 처리는 이들을 감소시켰으며, 더불어 자가포식 표지자인 microtubule-associated protein 1 light chain 3 (LC3)의 형태가 LC3-I에서 LC3-𝚷로 변환을 확인할 수 있었다. 공초점 현미경을 통해 2'-FL 처리에 따른 LC3 puncta의 증가가 확인되었다. 따라서, 2'-FL로 활성화된 자가포식이 TYR 및 TYRP1 단백질 발현량을 저해시킴으로서 멜라닌 생성을 감소시키는 것으로 시사된다. 결론적으로 2'-FL은 자가포식을 유도하여 멜라닌 생성이 억제됨이 확인되어 미백 화장품 소재로써의 가능성이 기대된다.

Antimelanogenic effect of ginsenoside Rg3 through extracellular signal-regulated kinase-mediated inhibition of microphthalmia-associated transcription factor

  • Lee, Seung Jae;Lee, Woo Jin;Chang, Sung Eun;Lee, Ga-Young
    • Journal of Ginseng Research
    • /
    • 제39권3호
    • /
    • pp.238-242
    • /
    • 2015
  • Background: Panax ginseng has been used to prolong longevity and is believed to be useful for improving skin complexion. Ginsenosides are the most active components isolated from ginseng, and ginsenoside Rg3 (G-Rg3) in particular has been demonstrated to possess antioxidative, antitumorigenic, and anti-inflammatory properties. The aim of this study was to examine the ability of G-Rg3 to inhibit melanogenesis. Methods: The effects of G-Rg3 on melanin contents and the protein levels of tyrosinase, microphthalmia-associated transcription factor (MITF), and tyrosinase-related protein 1 (TRP1) were evaluated. Melanogenesis-regulating signaling molecules such as Akt and extracellular signal-regulated kinase (ERK) were also examined to explore G-Rg3-induced antimelanogenic mechanisms. Results: G-Rg3 was found to significantly inhibit the synthesis of melanin in normal human epidermal melanocytes and B16F10 cells in a dose-dependent manner. The activity of cellular tyrosinase and the expression of MITF, tyrosinase, and TRP1 were all reduced, whereas ERK was strongly activated. PD98059 (a specific inhibitor of ERK) attenuated the G-Rg3-induced inhibition of melanin synthesis and tyrosinase activity. Conclusion: Taken together, these results showed that G-Rg3 induces the activation of ERK, which accounts for its antimelanogenic effects. G-Rg3 may be a promising safe skin-whitening agent, adding to the long list of uses of P. ginseng for the enhancement of skin beauty.