Browse > Article
http://dx.doi.org/10.15230/SCSK.2022.48.2.105

A Study on Melanin Reduction through Autophagy by 2'-Fucosyllactose  

Jung, So Young (Department of Applied Biotechnology, Ajou University)
Yoo, Han Jun (Department of Applied Biotechnology, Ajou University)
Heo, Hyojin (Department of Applied Biotechnology, Ajou University)
Lee, So Min (Department of Applied Biotechnology, Ajou University)
Brito, Sofia (Department of Applied Biotechnology, Ajou University)
Cha, Byungsun (Department of Applied Biotechnology, Ajou University)
Lei, Lei (Department of Applied Biotechnology, Ajou University)
Lee, Sang Hun (Department of Applied Biotechnology, Ajou University)
Bin, Bum-Ho (Department of Applied Biotechnology, Ajou University)
Lee, Mi-Gi (GBSA, Gyeonggido Business and Science Accelerator)
Kwak, Byeong-Mun (School of Cosmetic Science and Beauty Biotechnology, Semyung University)
Publication Information
Journal of the Society of Cosmetic Scientists of Korea / v.48, no.2, 2022 , pp. 105-112 More about this Journal
Abstract
2'-fucosyllactose (2'-FL) is the most abundant human milk oligosaccharide (HMO) present in breast milk, promoting the growth of beneficial microorganisms in the gut and aiding in the relief of allergic and inflammatory reactions. In this study, the anti-melanogenic effects of 2'-FL, and its potential for application in whitening cosmetics, were evaluated. MTT assay was performed on MNT-1 cells, human-derived melanocytes. 2'-FL was treated and replaced at 48 h intervals for 7 days, and it was confirmed that there was no cytotoxicity at 20 g/L or less, while a 40% reduction in melanin production was also observed. Western blot analysis of TYR and TYRP1, factors involved in melanogenesis, revealed that 2'-FL treatment reduced their expression levels. In addition, 2'-FL application and observation of the autophagy marker microtubule-associated protein 1 light chain 3 (LC3) revealed it was converted from LC3-I to LC3-𝚷, indicating increased autophagy. Likewise, confocal microscopy revealed an increase in LC3 puncta after 2'-FL treatment. Therefore, it is suggested that 2'-FL-mediated activation of autophagy reduces melanogenesis by inhibiting the expression levels of TYR and TYRP1 proteins. In conclusion, it has been confirmed that 2'-FL induces autophagy and suppresses melanin production, so its potential as a whitening cosmetic material is expected.
Keywords
2'-fucosyllactose (2'-FL); human milk oligosaccharides; autophagy; whitening; melanin;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 L. Xiao, T. Leusinkmuis, N. Kettelarij, I. V. Ark, B. Blijenberg, N. A. Hesen, B. Vantland, B. Stahl, S. A. Overbeek, J. Garssen, G. Folkerts, and B. Van't Land, Human milk oligosaccharide 2'-fucosyllactose improves innate and adaptive immunity in an influenza-specific murine vaccination model, Front. Immunol., 9, 452 (2018).   DOI
2 L. Bode, The functional biology of human milk oligosaccharides, Early Hum. Dev., 91(11), 619 (2015).   DOI
3 F. Baumgartner, L. Seitz, G. A. Sprenger, and C. Albermann, Construction of Escherichia coli strains with chromosomally integrated expression cassettes for the synthesis of 2'-fucosyllactose, Microb. Cell Fact., 12, DOI: 10.1186/1475-2859-12-40 (2013).   DOI
4 Z. T. Yu, N. N. Nanthakumar, and D. S. Newburg, The human milk oligosaccharide 2'-fucosyllactose quenches campylobacter jejuni-induced inflammation in human epithelial cells HEp-2 and HT-29 and in mouse intestinal mucosa, NUTR., 146(10), 1980 (2016).   DOI
5 T. Eiwegger, B. Stahl, J. Schmitt, G. Boehm, M. Gerstmayr, J. Pichler, and Z. Szepfalusi, Human milk-derived oligosaccharides and plant-derived oligosaccharides stimulate cytokine production of cord blood T-cells in vitro, Pediatr., 56(4), 536 (2004).
6 H. J. Park, D. S. Jo, J. E. Bae, N. Y. Park, J. B. Kim, and D. H. Cho, Ursolic acid inhibits pigmentation by increasing melanosomal autophagy in B16F1 cells, Biochem. Biophys. Res. Commun., 531(2), 209 (2020).   DOI
7 D. Vanberlo, A. E. Wallinga, F. A. vanacker, and D. J. Delsing, Safety assessment of biotechnologically produced 2'-Fucosyllactose a novel food additive, Food. Chemi. Toxicol., 118, 84 (2018).   DOI
8 N. Mizushima and M. Komatsu, Autophagy renovation of cells and tissues, Cell, 147(4), 728 (2011).   DOI
9 J. Lee, S. Giordanoa, and J. Zhang, Autophagy mitochondria and oxidative stress: cross-talk and redox signalling, Biochem., 441(2), 523 (2012).   DOI
10 J. Martinez, J. Almendinger, A. Oberst, R. Ness, C. P. Dillon, P. Fitzgerald, M. O. Hengartner, and D. R. Green, Microtubule-associated protein 1 light chain 3 alpha (LC3)-associated phagocytosis is required for the efficient clearance of dead cells, Proc. Nati. Acad. Sci., 108(42), 17396 (2011).   DOI
11 T. Mosmann, Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays, J. Immunol. Methods, 65(1), 55 (1983).   DOI
12 B. Levine, N. Mizushima, and H. W. Virgin, Autophagy in immunity and inflammation, Nature, 469(7330), 323 (2011).   DOI
13 J. Y. Kim, E. J. Lee, Y. Ahn, S Park, Y. J. Bae, T. G. Kim, and S. H. Oh, Cathepsin L, a Target of hypoxia-inducible factor-1-α, is involved in melanosome degradation in melanocytes, Int. J. Mol. Sci., 22(16), 8596 (2021).   DOI
14 H. Ho and A. K. Ganesan, The pleiotropic roles of autophagy regulators in melanogenesis, Pigment Cell Melanoma Res., 24(4), 595 (2011).   DOI
15 G. E. Costin and V. J. Hearing, Human skin pigmentation: Melanocytes modulate skin color in response to stress, FASEB. J., 21, 976 (2007).   DOI
16 R. Saternus, S. Pilz, S. Graber, M. Kleber, W. Marz, T. Vogt, and J. Reichrath, A closer look at evolution variants (SNPs) of genes involved in skin pigmentation, including EXOC2, TYR, TYRP1, and DCT, are associated with 25 (OH) D serum concentration, Int. J. Endocrinol., 156(1), 39 (2015).   DOI
17 L. Yu, C. K. Mcphee, L. Zheng, G. A. Mardones, Y. Rong, J. Peng, N. Mi, Y. Zhao, Z. Liu, F. Wan, D. W. Hailey, V. Oorschot, J. Klumperman, E. H. Baehrecke, and M. J. Lenardo, Termination of autophagy and reformation of lysosomes regulated by mTOR, Nature, 465(7300), 942 (2010).   DOI
18 S. H. Lee, I. H. Bae, E. S. Lee, H. J. Kim, J. S. Lee, and C. S. Lee, Glucose exerts an anti-melanogenic effect by indirect inactivation of tyrosinase in melanocytes and a human skin equivalent, Int. J. Mol. Sci., 21(5), 1736 (2020).   DOI
19 N. Mizushima, B. Levine, A. M. Cuervo, and D. J. Klionsky, Autophagy fights disease through cellular self-digestion, Nature, 451(7182), 1069 (2008).   DOI
20 D. Murase, A. Hachiya, K. Takano, R. Hicks, M. O. Visscher, T. Kitahara, T. Hase, Y. Takema, and T. Yoshimori, Autophagy has a significant role in determining skin color by regulating melanosome degradation in keratinocytes, J. Invest. Dermatol., 133(10), 2416 (2013).   DOI
21 K. H. Kim and M. S. Lee, Autophagy-a key player in cellular and body metabolism, Nat. Rev. Endocrinol., 10(6), 322 (2014).   DOI
22 E. Castanys-Munoz, M. J. Martin, and P. A. Prieto, 2'-Fucosyllactose an abundant, genetically determined soluble glycan present in human milk, Nutr. Rev., 71(12), 773 (2013).   DOI
23 J. T. Smilowitz, A. Osullivan, D. Barile, J. B. German, B. Lonnerdal, and C. M. Slupsky , The human milk metabolome reveals diverse oligosaccharide profiles, NUTR., 143(11), 1709 (2013).   DOI
24 X. Sui, R. Chen, Z. Wang, Z. Huang, N. Kong, M. Zhang, W. Han, F. Lou, J. Yang, Q. Zhang, X. Wang, C. He, and H. Pan, Autophagy and chemotherapy resistance a promising therapeutic target for cancer treatment, Cell Death. Dis., 4(10), e838 (2013).   DOI
25 I. Tanida, T. Ueno, and E. Kominami, LC3 and Autophagy, ed. V. Deretic, 445, 77, Humana Press, Totowa, New Jersey. (2008).
26 D. Murase, A. Kusaka-Kikushima, A. Hachiya, R. Fullenkamp, A. Stepp, A. Imai, and T. Yoshimori, Autophagy declines with premature skin aging resulting in dynamic alterations in skin pigmentation and epidermal differentiation, Int. J. Mol. Sci., 21(16), 5708 (2020).   DOI
27 C. S. Lee, H. S. Baek, I. H. Bae, S. J. Choi, Y. J. Kim, J. H. Lee, and J. W. Kim, Depigmentation efficacy of galacturonic acid through tyrosinase regulation in B16 murine melanoma cells and a three-dimensional human skin equivalent, Clin. Exp. Dermatol., 43(6), 708 (2018).   DOI
28 K. Kleszczynski, T. K. Kim, B. Bilska, M. Sarna, K. Mokrzy nski, A. Stegemann, E. Py za, R. J. Reiter, K. Steinbrink, M. Bohm, and A. T. Slominski, J. Pineal. Res., 67(4), e12610 (2019).
29 M. Berneburg, H. Plettengerg, and J. Krutmann, Photoaging of human skin, Photodermatol. Photoimmunol. Photomed., 16(6), 239 (2000).   DOI