• Title/Summary/Keyword: Human keratinocytes

Search Result 340, Processing Time 0.029 seconds

Prunus Yedoensis Inhibits the Inflammatory Chemokines, MDC and TARC, by Regulating the STAT1-Signaling Pathway in IFN-γ-stimulated HaCaT Human Keratinocytes

  • Kang, Gyeoung-Jin;Lee, Hye-Ja;Yoon, Weon-Jong;Yang, Eun-Jin;Park, Sun-Son;Kang, Hee-Kyoung;Park, Myung-Hwan;Yoo, Eun-Sook
    • Biomolecules & Therapeutics
    • /
    • v.16 no.4
    • /
    • pp.394-402
    • /
    • 2008
  • Atopic dermatitis (AD) is an inflammatory skin disease commonly characterized by infiltration of inflammatory cells into skin lesions. Keratinocytes produce many chemokines that are involved in the pathogenesis of skin disorders. In particular, macrophage-derived chemokine (MDC/CCL22) and thymus and activationregulated chemokine (TARC/CCL17) are Th2-type cytokines. Serum MDC and TARC levels are increased in AD patients. In this study, we investigated the anti-inflammatory effect and mechanism of action of the active fraction from Prunus yedoensis bark. We evaluated their inhibitory effects on the AD-like inflammatory markers (MDC and TARC) and JAK-STAT pathway (STAT1) in HaCaT keratinocytes. The EtOAc fraction of the crude extract (80% EtOH) and the E5 sub-fraction potently inhibited the induction of MDC and TARC mRNA and protein at 50 ${\mu}g$/mL in HaCaT cells. In addition, the E5 sub-fraction inhibited the phosphorylation of STAT1 protein associated with IFN-$\gamma$ signaling transduction in a dose-dependent manner. Thus, P. yedoensis may have antiatopic activity by suppressing the inflammatory chemokines (MDC and TARC).

Difference of Gene Expression between Hypertrophic Scar Keratinocytes and Normal Keratinocytes (비후성 반흔 각질세포와 정상 각질세포의 유전자 비교분석)

  • Choi, Sung-Won;Chung, Ho-Yun;Lim, Young-Kook;Kim, Hoon-Nam;Oh, Ji-Won;Kim, Moon-Kyu;Jeon, Sae-Hwa;Hong, Yong-Taek
    • Archives of Plastic Surgery
    • /
    • v.37 no.4
    • /
    • pp.317-322
    • /
    • 2010
  • Purpose: There is no clear evidence of the original cause of hypertrophic scar, and the effective method of treatment is not yet established. Recently the steps of searching in gene and molecular level are proceeding. we are trying to recognize the difference between keratinocytes of hypertrophic scar and normal skin. Then we do support the comprehension of the scar formation mechanism and scar management. Methods: Total RNAs were extracted from cultured keratinocytes from 4 hypertrophic scars and normal skins. The cDNA chips were prepared. A total of 3063 cDNAs from human cDNA library were arrayed. And the scanning data were analyzed. Results: On microarray, heat shock protein, pyruvate kinase, tumor rejection antigen were more than 2 fold intensity genes. Among them, heat shock 70 kd protein showed the strongest intensity difference. Conclusion: In this study, it can be concluded that heat shock proteins play an important role in the process of wound healing and scar formation. This study provides basic biologic information for scar research. The new way of the prevention and treatment of scar formation would be introduced with further investigations.

Protein tyrosine phosphatase PTPN21 acts as a negative regulator of ICAM-1 by dephosphorylating IKKβ in TNF-α-stimulated human keratinocytes

  • Cho, Young-Chang;Kim, Ba Reum;Cho, Sayeon
    • BMB Reports
    • /
    • v.50 no.11
    • /
    • pp.584-589
    • /
    • 2017
  • Intercellular adhesion molecule-1 (ICAM-1), which is induced by tumor necrosis factor (TNF)-${\alpha}$, contributes to the entry of immune cells into the site of inflammation in the skin. Here, we show that protein tyrosine phosphatase non-receptor type 21 (PTPN21) negatively regulates ICAM-1 expression in human keratinocytes. PTPN21 expression was transiently induced after stimulation with TNF-${\alpha}$. When overexpressed, PTPN21 inhibited the expression of ICAM-1 in HaCaT cells but PTPN21 C1108S, a phosphatase activity-inactive mutant, failed to inhibit ICAM-1 expression. Nuclear factor-${\kappa}B$ (NF-${\kappa}B$), a key transcription factor of ICAM-1 gene expression, was inhibited by PTPN21, but not by PTPN21 C1108S. PTPN21 directly dephosphorylated phospho-inhibitor of ${\kappa}B$ ($I{\kappa}B$)-kinase ${\beta}$ ($IKK{\beta}$) at Ser177/181. This dephosphorylation led to the stabilization of $I{\kappa}B{\alpha}$ and inhibition of NF-${\kappa}B$ activity. Taken together, our results suggest that PTPN21 could be a valuable molecular target for regulation of inflammation in the skin by dephosphorylating p-$IKK{\beta}$ and inhibiting NF-${\kappa}B$ signaling.

Anti-inflammatory Activity of Fucoidan with Blocking NF-κB and STAT1 in Human Keratinocytes Cells

  • Ryu, Min Ju;Chung, Ha Sook
    • Natural Product Sciences
    • /
    • v.21 no.3
    • /
    • pp.205-209
    • /
    • 2015
  • Fucoidan, a sulfated polysaccharide is found in several types of edible brown algae. It has shown numerous biological activities; however, the molecular mechanisms on the activity against atopic dermatitis have not been reported yet. We now examined the effects of fucoidan on chemokine production co-induced by TNF-α/IFN-γ, and the possible mechanisms underlying these biological effects. Our data showed that fucoidan inhibited the TNF-α/IFN-γ-induced production of thymus and activation-regulated chemokine (TARC) and macrophagederived chemokine (MDC) mRNA in human keratinocytes HaCaT cells. Also, fucoidan suppressed phosphorylation of nuclear factor kappa B (NF-κB) and activation of signal transducer and activator of transcription (STAT)1 in a dose-dependent manner. In addition, fucoidan significantly inhibited activation of extracellular-signal-regulated kinases (ERK) phosphorylation. These data indicate that fucoidan shows anti-inflammatory effects by suppressing the expression of TNF-α/IFN-γ-induced chemokines by blocking NF-κB, STAT1, and ERK1/2 activation, suggestive of as used as a therapeutic application in inflammatory skin diseases, such as atopic dermatitis.

Di(2-ethylhexyl) Phthalate Induces the Apoptotic Cell Death Mediated by Production of Reactive Oxygen Species in Human Keratinocyte (미세먼지의 di(2-ethylhexyl) phthalate가 유도한 피부상피세포 사멸 신호전달기전 연구)

  • Park, Jeong-Bae;Kim, Ji-Yun;Sung, Junghee;Kim, Yong-ung;Lee, Sei-Jung
    • Journal of Environmental Science International
    • /
    • v.29 no.3
    • /
    • pp.249-255
    • /
    • 2020
  • Particulate matter with an aerodynamic diameter of less than 2.5 μM (PM2.5) is one of the major environmental pollutants. Di(2-ethylhexyl) phthalate (DEHP), an endocrine disrupting chemical in PM2.5, has been utilized for the manufacturing of polyvinyl chloride to increase the flexibility of final products. In the present study, we investigated the ecotoxicological effect of DEHP on the viability of skin keratinocytes (HaCaT). DEHP induced apoptotic cell death mediated by phosphorylation of extracellular signal-regulated kinase through the production of intracellular Reactive Oxygen Species (ROS). Interestingly, we found that DEHP induces the phosphorylation of the nuclear factor-kappa B responsible for the expression of cleaved caspase-3 as an executional cell death protease in HaCaT cells. On the basis of these results, we suggest that DEHP in PM2.5 induces the apoptotic death of human keratinocytes via ROS-mediated signaling events.

Effects of Hahella chejuensis-Derived Prodigiosin on UV-Induced ROS Production, Inflammation and Cytotoxicity in HaCaT Human Skin Keratinocytes

  • Lee, Jieun;Kim, Hyun Ju;Lee, Sang Jun;Lee, Moo-Seung
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.3
    • /
    • pp.475-482
    • /
    • 2021
  • Prodigiosins, which are natural tripyrrole red pigments and synthetic derivatives, reportedly have multiple biological effects mainly on various types of cancer cells. However, the effects of bacterial prodigiosin on non-cancerous HaCaT human skin keratinocytes have not been reported. Therefore, the present study aimed to investigate the functional activities of prodigiosin derived from cultures of the bacterium Hahella chejuensis in HaCaT cells. Cell viability, the cell proliferation rate, and reactive oxygen species (ROS) production in vitro were assayed following treatment of HaCaT cells with prodigiosin. Prodigiosin did not cause cytotoxicity and notably increased proliferation of HaCaT cells. Furthermore, prodigiosin reduced ultraviolet (UV) irradiation-induced ROS production and the inflammatory response in HaCaT cells. More importantly, prodigiosin reduced matrix metalloproteinase-9 expression and increased collagen synthesis in UV-irradiated HaCaT cells, demonstrating that it elicits anti-aging effects. In conclusion, our results reveal that H. chejuensis-derived prodigiosin is a potential natural product to develop functional cosmetic ingredients.

Calcium-induced Human Keratinocytes(HaCaT) Differentiation Requires Protein Kinase B Activation in Phosphatidylinositol 3-Kinase-dependent Manner

  • Piao, Longzhen;Shin, Sang-Hee;Yang, Keum-Jin;Park, Ji-Soo;Shin, Eul-Soon;Li, Yu-Wen;Park, Kyung-Ah;Byun, Hee-Sun;Won, Min-Ho;Lee, Choong-Jae;Hur, Gang-Min;Seok, Jeong-Ho;Kim, Ju-Duck
    • Toxicological Research
    • /
    • v.22 no.3
    • /
    • pp.283-291
    • /
    • 2006
  • The survival and growth of epithelial cells depends on adhesion to the extracellular matrix. An adhesion signal may regulate the initiation of differentiation, since epidermal keratinocytes differentiate as they leave the basement membrane. A metabolically dead cornified cell envelope is the end point of epidermal differentiation so that this process may be viewed as a specialized form of programmed cell death. In order to investigate the precise cellular signaling events loading to terminal differentiation of keratinocytes, we have utilized HaCaT cells to monitor the biological consequences of $Ca^{2+}$ stimulation and numerous downstream signaling pathways, including activation of the extracellular signal-regulated protein kinase(ERK) pathway and activation of phosphatidylinositol 3-kinase(PI3K). The results presented in this study show that $Ca^{2+}$ function as potent agents for the differentiation of HaCaT keratinocytes, and this differentiation depends or the activation of ERK, Protein kinase B(PKB) and p70 ribosomal protein S6 kinase(p70S6K). Finally, the results show that the expression of Activator protein 1(AP-1; c-Jun and c-Fos) increased following $Ca^{2+}$-mediated differentiation of HaCaT cells, suggesting that ERK-mediated AP-1 expression is critical for initiating the terminal differentiation of keratinocytes.

Platycodin D Induced NF-$textsc{k}$B Activation and Apoptosis in Immortalized Keratinocytes

  • Ahn, Kwang-Seok;Hahn, Bum-Soo;Lee, Eun-Bang;Kim, Yeong-Shik
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.195.3-196
    • /
    • 2003
  • In this study, we investigated the molecular pathways targeted by platycodin D, which could involve apoptosis in immortalized human keratinocytes (HaCaT). We demonstrated that platycodin D-mediated apoptosis of HaCaT cells exhibited representative features, including DNA fragmentation, caspase-3, caspase-8 activation, and upregulation of Fas and FasL expression, but not p53 activation. To investigate the events involved in activation-induced FasL upregulation, we have examined mRNA accumulation, protein expression, and NF-$\kappa$B activity to elucidate transcription level in the HaCaT cell line treated with platycodin D. (omitted)

  • PDF

MicroRNA Analysis in Normal Human Oral Keratinocytes and YD-38 Human Oral Cancer Cells

  • Kim, Hye-Ryun;Park, Eu-Teum;Cho, Kwang-Hee;Kim, Do-Kyung
    • International Journal of Oral Biology
    • /
    • v.36 no.4
    • /
    • pp.179-185
    • /
    • 2011
  • MicroRNAs (miRNAs) are small non-coding RNAs that mediate gene expression at the post-transcriptional level by degrading or repressing targeted mRNAs. These molecules are about 21-25 nucleotides in length and exert their effects by binding to partially complementary sites in mRNAs, predominantly in the 3'-untranslated region (3'-UTR). Recent evidence has demonstrated that miRNAs can function as oncogenes or tumor suppressors through the modulation of multiple oncogenic cellular processes in cancer development, including initiation, cell proliferation, apoptosis, invasion and metastasis. In our present study, we examined the expression profile of miRNAs related to oral cancer cell growth inhibition using normal human oral keratinocytes (NHOK) and YD-38 human oral cancer cells. By miRNA microassay analysis, 40 and 31 miRNAs among the 1,769 examined were found to be up- and down-regulated in YD-38 cells compared with NHOK cells, respectively. Using qRT-PCR analysis, the expression levels of miR-30a and miR-1246 were found to be increased in YD-38 cells compared with NHOK cells, whereas miR-203 and miR-125a were observed to be decreased. Importantly, the overexpression of miR-203 and miR-125a significantly inhibited the growth of YD-38 cells. This finding and the microarray data indicate the involvement of specific miRNAs in the development and progression of oral cancer.