• Title/Summary/Keyword: Human head model

Search Result 182, Processing Time 0.027 seconds

Analysis of SAR on Human Head Caused by Antenna of PCS Handheld Telephone (PCS 전화기의 안테나에 의해 인체 두부에 유기되는 SAR 분석)

  • Park, Ju-Derk;Kim, Nam
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.7
    • /
    • pp.985-997
    • /
    • 1999
  • In this paper, the detection of 1 g and 10 g averaged SAR on human head caused by PCS handheld phones is analyzed and discussed. Conventional monopole antenna and planar structured PIFA are used in the computational model to apply to the antennas mounted on handheld phone. These antennas are designed to operate in the near of frequency 1.8 GHz, human head model is sampled to have cell size 1.5 mm and sloped to front direction by 30$^{\circ}$. It is found that, when monopole antenna is applied, 1 g averaged SAR is 1.4 W/kg, 10 g averaged SAR is 0.7 W/kg, when PIFA is applied, for each case, SARs are 1.143 W/kg, 0.4866 W/kg. While the radiation pattern of the monopole antenna is symmetrical, that of planar structured antenna is asymmetrical and SAR caused by PIFA is less than SAR by the monopole antenna. The radiation efficiency of PIFA is 62.6%, which is higher than that of monopole, 53%.

  • PDF

Comparison of Lipid Profiles in Head and Brain Samples of Drosophila Melanogaster Using Electrospray Ionization Mass Spectrometry (ESI-MS)

  • Jang, Hyun Jun;Park, Jeong Hyang;Lee, Ga Seul;Lee, Sung Bae;Moon, Jeong Hee;Choi, Joon Sig;Lee, Tae Geol;Yoon, Sohee
    • Mass Spectrometry Letters
    • /
    • v.10 no.1
    • /
    • pp.11-17
    • /
    • 2019
  • Drosophila melanogaster (fruits fly) is a representative model system widely used in biological studies because its brain function and basic cellular processes are similar to human beings. The whole head of the fly is often used to obtain the key function in brain-related diseases like degenerative brain diseases; however the biomolecular distribution of the head may be slightly different from that of a brain. Herein, lipid profiles of the head and dissected brain samples of Drosophila were studied using electrospray ionization-mass spectrometry (ESI-MS). According to the sample types, the detection of phospholipid ions was suppressed by triacylglycerol (TAG), or the specific phospholipid signals that are absent in the mass spectrum were measured. The lipid distribution was found to be different in the wild-type and the microRNA-14 deficiency model ($miR-14{\Delta}^1$) with abnormal lipid metabolism. A few phospholipids were also profiled by comparison of the head and the brain in two fly model systems. The mass spectra showed that the phospholipid distributions in the $miR-14{\Delta}^1$ model and the wild-type were different, and principal component analysis revealed a correlation between some phospholipids (phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidylserine (PS)) in $miR-14{\Delta}^1$. The overall results suggested that brain-related lipids should be profiled using fly samples after dissection for more accurate analysis.

Bayesian Network Model for Human Fatigue Recognition (피로 인식을 위한 베이지안 네트워크 모델)

  • Lee Young-sik;Park Ho-sik;Bae Cheol-soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.9C
    • /
    • pp.887-898
    • /
    • 2005
  • In this paper, we introduce a probabilistic model based on Bayesian networks BNs) for recognizing human fatigue. First of all, we measured face feature information such as eyelid movement, gaze, head movement, and facial expression by IR illumination. But, an individual face feature information does not provide enough information to determine human fatigue. Therefore in this paper, a Bayesian network model was constructed to fuse as many as possible fatigue cause parameters and face feature information for probabilistic inferring human fatigue. The MSBNX simulation result ending a 0.95 BN fatigue index threshold. As a result of the experiment, when comparisons are inferred BN fatigue index and the TOVA response time, there is a mutual correlation and from this information we can conclude that this method is very effective at recognizing a human fatigue.

A Range Dependent Structural HRTF Model for 3-D Sound Generation in Virtual Environments (가상현실 환경에서의 3차원 사운드 생성을 위한 거리 변화에 따른 구조적 머리전달함수 모델)

  • Lee, Young-Han;Kim, Hong-Kook
    • MALSORI
    • /
    • no.59
    • /
    • pp.89-99
    • /
    • 2006
  • This paper proposes a new structural head-related transfer function(HRTF) model to produce sounds in a virtual environment. The proposed HRTF model generates 3-D sounds by using a head model, a pinna model and the proposed distance model for azimuth, elevation, and distance that are three aspects for 3-D sounds, respectively. In particular, the proposed distance model consists of level normalization block distal region model, and proximal region model. To evaluate the performance of the proposed model, we setup an experimental procedure that each listener identifies a distance of 3-D sound sources that are generated by the proposed method with a predefined distance. It is shown from the tests that the proposed model provides an average distance error of $0.13{\sim}0.31$ meter when the sound source is generated as if it is 0.5 meter $\sim$ 2 meters apart from the listeners. This result is comparable to the average distance error of the human listening for the actual sound source.

  • PDF

Analysis of the Micro-Structural and Mechanical Properties in Human Femoral Head Trabecular Bone with and without Osteoporosis (대퇴골두 해면골의 미세구조 특성과 기계적 특성의 분석)

  • Won Ye-Yeon;Baek Myong-Hyun;Cui WenQuan;Chun KeyoungJin;Kim Man Kyung
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.6
    • /
    • pp.519-523
    • /
    • 2004
  • This study investigates micro-structural and mechanical properties of trabecular bone in human femoral head with and without osteoporosis using Micro-CT and finite element-model. 15 cored trabecular bone specimens with 20min of diameter were obtained from femoral heads with osteoporosis (T-score > -2.5 ) resected for total hip arthroplasty, and 5 specimens were removed from femoral head of cadavers, which has no history of musculoskeletal diseases. A high-resolution micro-CT system was used to scan each specimen to obtain histomorphometry indices. Based on obtained micro-images(pixel size=21.31㎛), a FE-model was created to determine mechanical property indices. While non-osteoporosis group had increases trabecular thickness, bone volume, bone volume fraction, degree of anisotropy and trabecular number compared with those of non-osteoporotic group, the non-osteoporotic group showed decreases in trabecular separation and structure model index. Regarding the mechanical property indices, reaction force, apparent stress and young's modulus were 1ower in osteoporotic group than in non-osteoporotic group. Our data shows salient deteriorations in trabecular micro-structural and mechanical properties in human femoral head with osteoporosis.

Simulation and validation of flash flood in the head-water catchments of the Geum river basin

  • Duong, Ngoc Tien;Kim, Jeong Bae;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.138-138
    • /
    • 2021
  • Flash floods are one of the types of natural hazards which has severe consequences. Flash floods cause high mortality, about 5,000 deaths a year worldwide. Flash floods usually occur in mountainous areas in conditions where the soil is highly saturated and also when heavy rainfall happens in a short period of time. The magnitude of a flash flood depends on several natural and human factors, including: rainfall duration and intensity, antecedent soil moisture conditions, land cover, soil type, watershed characteristics, land use. Among these rainfall intensity and antecedent soil moisture, play the most important roles, respectively. Flash Flood Guidance is the amount of rainfall of a given duration over a small stream basin needed to create minor flooding (bank-full) conditions at the outlet of the stream basin. In this study, the Sejong University Rainfall-Runoff model (SURR model) was used to calculate soil moisture along with FFG in order to identify flash flood events for the Geum basin. The division of Geum river basin led to 177 head-water catchments, with an average of 38 km2. the soil moisture of head-water catchments is considered the same as sub-basin. The study has measured the threshold of flash flood generation by GIUH method. Finally, the flash flood events were used for verification of FFG. The results of the validation of seven past independent events of flash flood events are very satisfying.

  • PDF

Finite element modeling of human cervical spine (인체 경추부의 유한요소 모델링)

  • Choi, H.Y.;Eom, H.W.;Lee, T.H.;Kang, S.B.;Hwang, M.C.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.280-283
    • /
    • 1997
  • Human cervical spine has to protect the neural components and vascular structures. Also, it must have the flexibility afforded by an extensive range of motion to integrate the head with the body and environment. Because of these two-sided features, human cervical spine has very complicated shapes and their injury mechanisms are not fully understood yet. We have developed analytical model of human CS by using the finite element method. The model has been verified with in vivo and in vitro experimental results. From the qualitative analysis of simulation results, we were able to explain some of the fundamental mechanisms of neck pain. Further more, this FE model of human CS can be used as an analytical tool or biomechanical design of the clinical device and safety restraints.

  • PDF

HRTF Interpolation Using a Spherical Head Model (원형 머리 모델을 이용한 머리 전달 함수의 보간)

  • Lee, Ki-Seung;Lee, Seok-Pil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.7
    • /
    • pp.333-341
    • /
    • 2008
  • In this paper, a new interpolation model for the head related transfer function (HRTF) was proposed. In the method herein, we assume that the impulse response of the HRTF for each azimuth angle is given by linear interpolation of the time-delayed neighboring impulse responses of HRTFs. The time delay of the HRTF for each azimuth angle is given by sum of the sound wave propagation time from the ears to the sound source, which can be estimated by using azimuth angle, the physical shape of the underlying head and the distance between the head and sound source, and the refinement time yielding the minimum mean square error. Moreover, in the proposed model, the interpolation intervals were not fixed but varied, which were determined by minimizing the total number of HRTFs while the synthesized signals have no perceptual difference from the original signals in terms of sound location. To validate the usefulness of the proposed interpolation model, the proposed model was applied to the several HRTFs that were obtained from one dummy-head and three human heads. We used the HRTFs that have 5 degree azimuth angle resolution at 0 degree elevation (horizontal plane). The experimental results showed that using only $30\sim40%$ of the original HRTFs were sufficient for producing the signals that have no audible differences from the original ones in terms of sound location.

Real-time Marker-free Motion Capture System to Create an Agent in the Virtual Space (가상 공간에서 에이전트 생성을 위한 실시간 마커프리 모션캡쳐 시스템)

  • 김성은;이란희;박창준;이인호
    • Proceedings of the IEEK Conference
    • /
    • 2002.06c
    • /
    • pp.199-202
    • /
    • 2002
  • We described a real-time 3D computer vision system called MIMIC(Motion interface f Motion information Capture system) that can capture and save motion of an actor. This system analyzes input images from vision sensors and searches feature information like a head, hands, and feet. Moreover, this estimates intermediated joints as an elbow and hee using feature information and makes 3D human model having 20 joints. This virtual human model mimics the motion of an actor in real-time. Therefore this system can realize the movement of an actor unaffectedly because of making intermediated joint for complete human body contrary to other marker-free motion capture system.

  • PDF

Electromagnetic Interactions between a Cellular Phone and the Human Body and Synthesis of a Bone-Equivalent Material (휴대폰 전자파와 인체의 상호 영향 및 뼈 유사 물질 합성 연구)

  • 윤용섭;김인광;전중창;박위상
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.2
    • /
    • pp.277-290
    • /
    • 1999
  • A simulation using the finite-difference time-domain method to analyze the electromagnetic interactions between a cellular phone and the human body was conducted, and a synthesis of a bone-equivalent material to make a human head phantom was performed. A test model of the cellular phone was fabricated to measure its reflection coefficient and radiation pattern in the free space. Various effects of the human body on the characteristics of the phone, such as input impedance, reflection coefficient, radiation pattern, and radiation efficiency are analyzed as the distance between the head and the phone antenna varies. When the phone was operated close to the head, the resonant frequency of the antenna decreased by up to 12%. With the output power of 0.6W, as long as the distance was larger than 30mm, the 1-g averaged peak SAR was below the ANSI/IEEE safety guideline, 1.6 W/kg. To synthesize the bone-equivalent material, an epoxy with hardener and a graphite powder were used as basis ingredients, and a small amount of a conducting epoxy was added to control the conductivity of the material. A material having a relative permittivity of 18.04 and a conductivity of 0.347, which are close to those of the bone at 850 MHz, was synthesized.

  • PDF