• Title/Summary/Keyword: Human gastric cancer cells

Search Result 303, Processing Time 0.026 seconds

Anticancer Effect of Doenjang in in vitro Sulforhodamine B (SRB) Assay (된장의 in vitro Sulforhodamine B (SRB) Assay에 의한 암세포 증식 억제 효과)

  • 이숙희;임선영;박건영
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.1
    • /
    • pp.240-245
    • /
    • 1999
  • Growth inhibitory effect of doenjang(Korean soypaste) methanol extracts in SRB assay using AGS human gastric adenocarcinoma cell, Hep 3B human hepatocellular carcinoma cell and HT 29 human colon cancer cell was studied. The treatment of doenjang methanol extracts(2mg/assay) to the AGS, Hep 3B and HT 29 cancer cells inhibited the growth of the cancer cells by 55%, 60%, and 71%, respectively. Doenjang methanol extracts exhibited the highest inhibitory effect among other soybean fermented foods and original materials in the SRB assay. In addition, to separate active compounds of doenjang methanol extracts, we fractionated the doenjang with hexane, methanol, dichloromethane, ethylacetate and butanol. Growth inhibitory effect on the AGS, Hep 3B, HT 29 and MG 63 cancer cells was the highest in the fractions of dichloromethane and ethylacetate among other solvent fractions of the doenjang. These results showed that some compounds contained in the fractions of dichloromethane and ethylacetate might play a role on the anticanceric effect of doenjang.

  • PDF

S-benzyl-cysteine-mediated Cell Cycle Arrest and Apoptosis Involving Activation of Mitochondrial-dependent Caspase Cascade through the p53 Pathway in Human Gastric Cancer SGC-7901 Cells

  • Sun, Hua-Jun;Meng, Lin-Yi;Shen, Yang;Zhu, Yi-Zhun;Liu, Hong-Rui
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6379-6384
    • /
    • 2013
  • S-benzyl-cysteine (SBC) is a structural analog of S-allylcysteine (SAC), which is one of the major water-soluble compounds in aged garlic extract. In this study, anticancer activities and the underlying mechanisms of SBC action were investigated and compared these with those of SAC using human gastric cancer SGC-7901 cells. SBC significantly suppressed the survival rate of SGC-7901 cells in a concentration- and time-dependent manner, and the inhibitory activities of SBC were stronger than those of SAC. Flow cytometry revealed that SBC induced G2-phase arrest and apoptosis in SGC-7901 cells. Typical apoptotic morphological changes were observed by Hoechst 33258 dye assay. SBC-treatment dramatically induced the dissipation of mitochondrial membrane potential (${\Delta}{\Psi}m$), and enhanced the enzymatic activities of caspase-9 and caspase-3 whilst hardly affecting caspase-8 activity. Furthermore, Western blotting indicated that SBC-induced apoptosis was accompanied by up-regulation of the expression of p53, Bax and the down-regulation of Bcl-2. Taken together, this study suggested that SBC exerts cytotoxic activity involving activation of mitochondrial-dependent apoptosis through p53 and Bax/Bcl-2 pathways in human gastric cancer SGC-7901 cells.

Connexin32 inhibits gastric carcinogenesis through cell cycle arrest and altered expression of p21Cip1 and p27Kip1

  • Jee, Hyang;Lee, Su-Hyung;Park, Jun-Won;Lee, Bo-Ram;Nam, Ki-Taek;Kim, Dae-Yong
    • BMB Reports
    • /
    • v.46 no.1
    • /
    • pp.25-30
    • /
    • 2013
  • Gap junctions and their structural proteins, connexins (Cxs), have been implicated in carcinogenesis. To explore the involvement of Cx32 in gastric carcinogenesis, immunochemical analysis of Cx32 and proliferation marker Ki67 using tissue-microarrayed human gastric cancer and normal tissues was performed. In addition, after Cx32 overexpression in the human gastric cancer cell line AGS, cell proliferation, cell cycle analyses, and $p21^{Cip1}$ and $p27^{Kip1}$ expression levels were examined by bromodeoxyuridine assay, flow cytometry, real-time RT-PCR, and western blotting. Immunohistochemical study noted a strong inverse correlation between Cx32 and Ki67 expression pattern as well as their location. In vitro, overexpression of Cx32 in AGS cells inhibited cell proliferation significantly. $G^1$ arrest, up-regulation of cell cycle-regulatory proteins $p21^{Cip1}$ and $p27^{Kip1}$ was also found at both mRNA and protein levels. Taken together, Cx32 plays some roles in gastric cancer development by inhibiting gastric cancer cell proliferation through cell cycle arrest and cell cycle regulatory proteins.

Inactivation of SMAD$_4$ Tumor Suppressor gene during Gastric Cancer Progression

  • Shin, Young-Kee
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2006.11a
    • /
    • pp.19-24
    • /
    • 2006
  • Mothers against decapentaplegic homolog 4 (SMAD4) is a tumor suppressor gene associated with gastrointestinal carcinogenesis. The aim of the present study was to characterize more precisely its role in the development and progression of human gastric carcinoma. In this study, using tissue microarray analysis of 283 gastric cancers and related lesions, we found loss of SMAD4 protein expression in the cytoplasm (36/114, 32%) and in the nucleus (46/114, 40%) of gastric cancer cells. The loss of nuclear SMAD4 expression in primary tumors correlated significantly with poor survival, and was an independent prognostic marker in multivariate analysis. We also found a substantial decrease in SMAD4 expression at both the RNA and protein level in several human gastric carcinoma cell lines. To identify the genetic and/or epigenetic mechanisms of altered SMAD4 expression in gastric carcinoma, loss of heterozygosity (LOH), promoter hypermethylation, and exon mutations were examined. We found that LOH (20/70, 29%) and promoter hypermethylation (4/73, 5%) were associated with the loss of SMAD4 expression. SMAD4 protein levels wore also affected in certain gastric carcinoma cell lines following incubation with Mc132, a proteasome inhibitor. Taken together, our results indicate that the loss of SMAD4, especially loss of nuclear SMAD4 expression, is involved in gastric cancer progression. The loss of SMAD4 in gastric carcinomas is due to several mechanisms, including LOH, hypermethylation, and proteasome degradation.

  • PDF

Expression of Peroxisome Proliferator-Activated Receptor Gamma in Helicobacter Pylori-associated Mouse Gastric Cancer Tissue and Human Gastric Epithelial Cells.

  • Oh, Sang-yeon;Nam, Ki-taek;Jang, Dong-deuk;Yang, Ki-hwa;Hahm, Ki-baik;Kim, Dae-yong
    • Proceedings of the Korean Society of Veterinary Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.11-11
    • /
    • 2003
  • Peroxisome proliferator-activated receptor (PPAR) is nuclear hormone receptors that can be activated by a variety of compounds. Two PPAR gamma isoforms are expressed at the protein level in mouse, gamma 1 and gamma 2. And PPAR gamma is intimately associated with cell differentiation and proliferation[1]. So aim of this study, investigated where express PPAR gamma in mouse gastric cancer tissues, including human gastric cancer cell lines and expression pattern of PPAR gamma. (omitted)

  • PDF

Effects of Water Extract from fermented Chaga Mushroom(Inonotus obliquus) on the Proliferation of Human Cancer Cell Lines. (발효 차가버섯 추출물이 인체 종양세포주 증식에 미치는 영향)

  • Cha, Jae-Young;Park, Sang-Hyun;Heo, Jin-Sun;Cho, Young-Su
    • Journal of Life Science
    • /
    • v.17 no.5 s.85
    • /
    • pp.671-677
    • /
    • 2007
  • This study was performed to investigate the effect of the water-extract from non-fermented or fermented Chaga mushrooms (Inonotus obliquus) on the proliferation and apoptosis of the NIH3T3 mouse normal fibroblast cells and various human cancer cell lines including HCT-15 human colon carcinoma, AGS human gastric carcinoma, MCF-7 human breast adenocarcinoma, Hep3B human hepatocellular carcinoma and HeLa human cervical carcinoma using MTT(3-[4,5-dimethylthiazol-2-yl] -2,5-diphenyl tetrazolium bromide) assay and DNA fragmentation. In an anti-cancer test using various human cancer cells, fermented Chaga mushroom extract showed higher antiproliferating effect than that of non-fermented Chaga mushroom extract. Mouse normal NIH3T3 cells were exhibited 80% above survival under fermented or non-fermented Chngn mushroom extract of various concentrations(0, 0.5 and 1 mg/ml). Fermented Chaga mushroom extract significantly inhibited cell growth on HCT-15 cells in a dose-dependent manner. HCT-15 cells treated with non-fermented or fermented Chaga mushrooms extract produced a distinct oligonucleosomal ladder with different sizes of DNA fragments, a typical characteristic of cells undergoing apoptosis. These results suggest that fermented Chaga mushroom extract suppresses growth of HCT-15 human colon carcinoma cells through apoptosis.

Effects of Aloe-emodin and Emodin on Proliferation of the MKN45 Human Gastric Cancer Cell Line

  • Chihara, Takeshi;Shimpo, Kan;Beppu, Hidehiko;Yamamoto, Naoki;Kaneko, Takaaki;Wakamatsu, Kazumasa;Sonoda, Shigeru
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.9
    • /
    • pp.3887-3891
    • /
    • 2015
  • Aloe-emodin (1, 8-dihydroxy-3-hydroxyl-methylanthraquinone; AE) and emodin (1,3,8-trihydroxy-6-methylanthraquinone; EM) are anthraquinone derivatives that have been detected in some medical plants and share similar anthraquinone structures. AE and EM have been shown to exhibit anticancer activities in various cancer cell lines; however, the inhibitory effects of these derivatives on the growth of cancer cells were previously reported to be different. Gastric cancer is the second most common cause of cancer cell death worldwide. In the present study, we examined the inhibitory effects of 0.05 mM AE and 0.05 mM EM on the proliferation of the MKN45 human gastric cancer cell line. The proliferation of MKN45 cells was significantly inhibited in AE- and EM-treated groups 24 h and 48 h after treatment. Furthermore, the inhibitory effects of EM were stronger than those of AE. The cell cycle of MKN45 cells were arrested in G0/G1 phase or G0/G1 and G2/M phases by AE and EM, respectively. However, an analysis of intracellular polyamine levels and DNA fragmentation revealed that the mechanisms underlying cell death following cell arrest induced by AE and EM differed.

Inhibitory Effects of Phenolic Alkaloids of Menispermum Dauricum on Gastric Cancer in Vivo

  • Zhang, Hong-Feng;Wu, Di;Du, Jian-Kuo;Zhang, Yan;Su, Yun-Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.24
    • /
    • pp.10825-10830
    • /
    • 2015
  • The present study was conducted to investigate effects and mechanisms of action of phenolic alkaloids of Menispermum dauricum (PAMD) on gastric cancer in vivo. In vitro, cell apoptosis of human gastric cancer cell line SGC-7901 was observed using fluorescence staining. In vivo, a mice model was constructed to observe tumor growth with different doses. Cell apoptosis was examined using flow cytometry and K-RAS protein expression using Western blotting. The mRNA expression of P53, BCL-2, BAX, CASPASE-3, K-RAS was examined by real-time PCR. PAMD significantly suppressed tumor growth in the xenograft model of gastric cancer in a dose-dependent manner (p<0.01). Functionally, PAMD promoted cell apoptosis of the SGC-7901 cells and significantly increased the rate of cell apoptosis of gastric tumor cells (p<0.05). Mechanically, PAMD inhibited the expression of oncogenic K-RAS both at the mRNA and protein levels. In addition, PAMD affected the mRNA expression of the cell apoptosis-related genes (P53, BCL-2, BAX, CASPASE-3). PAMD could suppress gastric tumor growth in vivo, possibly through inhibiting oncogenic K-RAS, and induce cell apoptosis possibly by targeting the cell apoptosis-related genes of P53, BCL-2, BAX, CASPASE-3.

Effects of Rhus verniciflua Stokes Extract on Cell Viability, Cell Cycle Progression and Apoptosis of AGS Cell (건칠(乾漆)이 위암세포의 활성, 세포사멸 및 세포주기관련 유전자 발현에 미치는 영향)

  • An, Jin-Yeong;Ko, Seong-Gyu;Ko, Heung
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.3
    • /
    • pp.701-709
    • /
    • 2006
  • The Rhus verniciflua Stokes (乾漆-RVS) has been used in traditional East Asia medicine for the therapy of gastritis, stomach cancer, although the mechanism for the biological activity is unclear. In the present study aims to investigate RVS extract contributes to growth inhibitory effect and it's the molecular mechanism on the human gastric cancer cells. AGS (gastric cancer cells) and RIEI (normal cells) were treated to different concentrations and periods of RVS extract $(10{\;}{\sim{{\;}100{\;}ug/mil)$. Growth inhibitory effect was analyzed by measuring FACS study and MTS assay. Cell cycle inhibition was confirmed by measuring CDK2 kinase activity by immunoprecipitation and kinase assay. And apoptosis was confirmed by surveying caspase cascades activation using a pan caspase inhibitor Exposure to RVS extract (50 ug/mll) resulted in a synergistic inhibitory effect on cell growth in AGS cells. Growth inhibition was related with the inhibition of proliferation and induction of apoptosis. The extract induces Gl -cell cycle arrest through the regulation of cyclins, the induction of p27kip1, and the decrease CDK2 kinase activity. And upregulated p27kip1 level is caused by protein stability increment by the reduction of S-phase kinase-associated protein 2 (Skp2), a key molecule related with p27kip1 ubiquitination and degradation, and do novo protein synthesis. Besides, 乾漆 extract induces apoptosis through the expression of Bax, poly(ADP-ribose) polymerase (PARP) and activation of caspase-3. RVS extract induces Gl -cell cycle arrest via accumulation of p27kip1 and apoptosis in human gastric cancer cells but not in normal cells, therefore we suggest that the extract can be used as a novel class of anti-cancer drugs.