Browse > Article
http://dx.doi.org/10.5483/BMBRep.2013.46.1.078

Connexin32 inhibits gastric carcinogenesis through cell cycle arrest and altered expression of p21Cip1 and p27Kip1  

Jee, Hyang (Department of Veterinary Pathology and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University)
Lee, Su-Hyung (Department of Veterinary Pathology and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University)
Park, Jun-Won (Department of Veterinary Pathology and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University)
Lee, Bo-Ram (Department of Veterinary Pathology and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University)
Nam, Ki-Taek (Nashville Department of Veterans Affairs Medical Center, Vanderbilt University School of Medicine)
Kim, Dae-Yong (Department of Veterinary Pathology and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University)
Publication Information
BMB Reports / v.46, no.1, 2013 , pp. 25-30 More about this Journal
Abstract
Gap junctions and their structural proteins, connexins (Cxs), have been implicated in carcinogenesis. To explore the involvement of Cx32 in gastric carcinogenesis, immunochemical analysis of Cx32 and proliferation marker Ki67 using tissue-microarrayed human gastric cancer and normal tissues was performed. In addition, after Cx32 overexpression in the human gastric cancer cell line AGS, cell proliferation, cell cycle analyses, and $p21^{Cip1}$ and $p27^{Kip1}$ expression levels were examined by bromodeoxyuridine assay, flow cytometry, real-time RT-PCR, and western blotting. Immunohistochemical study noted a strong inverse correlation between Cx32 and Ki67 expression pattern as well as their location. In vitro, overexpression of Cx32 in AGS cells inhibited cell proliferation significantly. $G^1$ arrest, up-regulation of cell cycle-regulatory proteins $p21^{Cip1}$ and $p27^{Kip1}$ was also found at both mRNA and protein levels. Taken together, Cx32 plays some roles in gastric cancer development by inhibiting gastric cancer cell proliferation through cell cycle arrest and cell cycle regulatory proteins.
Keywords
AGS cells; Cell cycle distribution; Cell proliferation; Connexin32; Gastric cancer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hohenberger, P. and Gretschel, S. (2003) Gastric cancer. Lancet 362, 305-315.   DOI   ScienceOn
2 Jung, K. W., Park, S., Kong, H. J., Won, Y. J., Lee, J. Y., Park, E. C. and Lee, J. S. (2011) Cancer statistics in Korea: incidence, mortality, survival, and prevalence in 2008. Cancer Res. Treat. 43, 1-11.   DOI   ScienceOn
3 Correa, P. (1992) Human gastric carcinogenesis: a multistep and multifactorial process--First American Cancer Society Award Lecture on Cancer Epidemiology and Prevention. Cancer Res. 52, 6735-6740.
4 Correa, P. and Houghton, J. (2007) Carcinogenesis of Helicobacter pylori. Gastroenterology 133, 659-672.   DOI   ScienceOn
5 Kwon, H. J., Won, Y. S., Nam, K. T., Yoon, Y. D., Jee, H., Yoon, W. K., Nam, K. H., Kang, J. S., Han, S. U., Choi, I. P., Kim, D. Y. and Kim, H. C. (2012) Vitamin D upregulated protein 1 deficiency promotes N-methyl-N-nitrosourea and Helicobacter pylori-induced gastric carcinogenesis in mice. Gut 61, 53-63.   DOI   ScienceOn
6 Crabtree, J. E., Court, M., Aboshkiwa, M. A., Jeremy, A. H., Dixon, M. F. and Robinson, P. A. (2004) Gastric mucosal cytokine and epithelial cell responses to Helicobacter pylori infection in Mongolian gerbils. J. Pathol. 202, 197-207.   DOI   ScienceOn
7 Vinken, M., Henkens, T., De Rop, E., Fraczek, J., Vanhaecke, T. and Rogiers, V. (2008) Biology and pathobiology of gap junctional channels in hepatocytes. Hepatology 47, 1077-1088.   DOI   ScienceOn
8 Laird, D. W. (2006) Life cycle of connexins in health and disease. Biochem. J. 394, 527-543.   DOI   ScienceOn
9 Huang, R. P., Fan, Y., Hossain, M. Z., Peng, A., Zeng, Z. L. and Boynton, A. L. (1998) Reversion of the neoplastic phenotype of human glioblastoma cells by connexin 43 (cx43). Cancer Res. 58, 5089-5096.
10 Krutovskikh, V. A., Troyanovsky, S. M., Piccoli, C., Tsuda, H., Asamoto, M. and Yamasaki, H. (2000) Differential effect of subcellular localization of communication impairing gap junction protein connexin43 on tumor cell growth in vivo. Oncogene 19, 505-513.   DOI   ScienceOn
11 Olbina, G. and Eckhart, W. (2003) Mutations in the second extracellular region of connexin 43 prevent localization to the plasma membrane, but do not affect its ability to suppress cell growth. Mol. Cancer Res. 1, 690-700.
12 Zhang, Y. W., Morita, I., Ikeda, M., Ma, K. W. and Murota, S. (2001) Connexin43 suppresses proliferation of osteosarcoma U2OS cells through post-transcriptional regulation of p27. Oncogene 20, 4138-4149.   DOI
13 Koffler, L., Roshong, S., Kyu Park, I., Cesen-Cummings, K., Thompson, D. C., Dwyer-Nield, L. D., Rice, P., Mamay, C., Malkinson, A. M. and Ruch, R. J. (2000) Growth inhibition in G(1) and altered expression of cyclin D1 and p27(kip-1) after forced connexin expression in lung and liver carcinoma cells. J. Cell. Biochem. 79, 347-354.   DOI
14 Sanchez-Alvarez, R., Paino, T., Herrero-Gonzalez, S., Medina, J. M. and Tabernero, A. (2006) Tolbutamide reduces glioma cell proliferation by increasing connexin43, which promotes the up-regulation of p21 and p27 and subsequent changes in retinoblastoma phosphorylation. Glia 54, 125-134.   DOI   ScienceOn
15 Giepmans, B. N. (2004) Gap junctions and connexin-interacting proteins. Cardiovasc. Res. 62, 233-245.   DOI   ScienceOn
16 Kumar, N. M. and Gilula, N. B. (1986) Cloning and characterization of human and rat liver cDNAs coding for a gap junction protein. J. Cell. Biol. 103, 767-776.   DOI   ScienceOn
17 Uchida, Y., Matsuda, K., Sasahara, K., Kawabata, H. and Nishioka, M. (1995) Immunohistochemistry of gap junctions in normal and diseased gastric mucosa of humans. Gastroenterology 109, 1492-1496.   DOI   ScienceOn
18 Mroue, R. M., El-Sabban, M. E. and Talhouk, R. S. (2011) Connexins and the gap in context. Integr. Biol. (Camb) 3, 255-266.   DOI   ScienceOn
19 Willecke, K., Eiberger, J., Degen, J., Eckardt, D., Romualdi, A., Guldenagel, M., Deutsch, U. and Sohl, G. (2002) Structural and functional diversity of connexin genes in the mouse and human genome. Biol. Chem. 383, 725-737.
20 Radebold, K., Horakova, E., Gloeckner, J., Ortega, G., Spray, D. C., Vieweger, H., Siebert, K., Manuelidis, L. and Geibel, J. P. (2001) Gap junctional channels regulate acid secretion in the mammalian gastric gland. J. Membr. Biol. 183, 147-153.   DOI
21 Kanczuga-Koda, L., Sulkowski, S., Koda, M. and Sulkowska, M. (2005) Alterations in connexin26 expression during colorectal carcinogenesis. Oncology 68, 217-222.   DOI   ScienceOn
22 Torres, L. N., Matera, J. M., Vasconcellos, C. H., Avanzo, J. L., Hernandez-Blazquez, F. J. and Dagli, M. L. (2005) Expression of connexins 26 and 43 in canine hyperplastic and neoplastic mammary glands. Vet. Pathol. 42, 633-641.   DOI   ScienceOn
23 Omori, Y., Li, Q., Nishikawa, Y., Yoshioka, T., Yoshida, M., Nishimura, T. and Enomoto, K. (2007) Pathological significance of intracytoplasmic connexin proteins: implication in tumor progression. J. Membr. Biol. 218, 73-77.   DOI
24 Jee, H., Nam, K. T., Kwon, H. J., Han, S. U. and Kim, D. Y. (2011) Altered expression and localization of connexin32 in human and murine gastric carcinogenesis. Dig. Dis. Sci. 56, 1323-1332.   DOI
25 Avanzo, J. L., Mesnil, M., Hernandez-Blazquez, F. J., da Silva, T. C., Fukumasu, H., Mori, C. M., Yamasaki, H. and Dagli, M. L. (2006) Altered expression of connexins in urethane-induced mouse lung adenomas. Life Sci. 79, 2202-2208.   DOI   ScienceOn
26 Xu, H. T., Li, Q. C., Zhang, Y. X., Zhao, Y., Liu, Y., Yang, Z. Q. and Wang, E. H. (2008) Connexin 43 recruits E-cadherin expression and inhibits the malignant behaviour of lung cancer cells. Folia. Histochem. Cytobiol. 46, 315-321.
27 Udaka, N., Miyagi, Y. and Ito, T. (2007) Connexin expression in mouse lung tumor. Cancer Lett. 246, 224-229.   DOI   ScienceOn
28 Sanches, D. S., Pires, C. G., Fukumasu, H., Cogliati, B., Matsuzaki, P., Chaible, L. M., Torres, L. N., Ferrigno, C. R. and Dagli, M. L. (2009) Expression of connexins in normal and neoplastic canine bone tissue. Vet. Pathol. 46, 846-859.   DOI   ScienceOn
29 Edwards, G. O., Jondhale, S., Chen, T. and Chipman, J. K. (2008) A quantitative inverse relationship between connexin32 expression and cell proliferation in a rat hepatoma cell line. Toxicology 253, 46-52.   DOI   ScienceOn
30 Hunter, T. and Pines, J. (1994) Cyclins and cancer. II: Cyclin D and CDK inhibitors come of age. Cell 79, 573-582.   DOI   ScienceOn
31 Ford, H. L., Sclafani, R. A. and DeGregori, J. (2004) Cell cycle regulatory cascades; in Cell cycle and growth control: Biomolecular regulation and cancer (Stein, G. S. and Pardee, A. B., eds.), pp. 95-128, Wiley-Liss, Hoboken, USA.
32 Avanzo, J. L., Mesnil, M., Hernandez-Blazquez, F. J., Mackowiak, II, Mori, C. M., da Silva, T. C., Oloris, S. C., Garate, A. P., Massironi, S. M., Yamasaki, H. and Dagli, M. L. (2004) Increased susceptibility to urethane-induced lung tumors in mice with decreased expression of connexin43. Carcinogenesis 25, 1973-1982.   DOI   ScienceOn
33 Temme, A., Buchmann, A., Gabriel, H. D., Nelles, E., Schwarz, M. and Willecke, K. (1997) High incidence of spontaneous and chemically induced liver tumors in mice deficient for connexin32. Curr. Biol. 7, 713-716.   DOI   ScienceOn