• 제목/요약/키워드: Human gait motion

검색결과 91건 처리시간 0.021초

Fast Motion Synthesis of Quadrupedal Animals Using a Minimum Amount of Motion Capture Data

  • Sung, Mankyu
    • ETRI Journal
    • /
    • 제35권6호
    • /
    • pp.1029-1037
    • /
    • 2013
  • This paper introduces a novel and fast synthesizing method for 3D motions of quadrupedal animals that uses only a small set of motion capture data. Unlike human motions, animal motions are relatively difficult to capture. Also, it is a challenge to synthesize continuously changing animal motions in real time because animals have various gait types according to their speed. The algorithm proposed herein, however, is able to synthesize continuously varying motions with proper limb configuration by using only one single cyclic animal motion per gait type based on the biologically driven Froude number. During the synthesis process, each gait type is automatically determined by its speed parameter, and the transition motions, which have not been entered as input, are synthesized accordingly by the optimized asynchronous motion blending technique. At the start time, given the user's control input, the motion path and spinal joints for turning are adjusted first and then the motion is stitched at any speed with proper transition motions to synthesize a long stream of motions.

움직임 실루엣 영상의 일반적인 표현 방식에 대한 연구 (A General Representation of Motion Silhouette Image: Generic Motion Silhouette Image(GMSI))

  • 홍성준;이희성;김은태
    • 제어로봇시스템학회논문지
    • /
    • 제13권8호
    • /
    • pp.749-753
    • /
    • 2007
  • In this paper, a generalized version of the Motion Silhouette Image(MSI) called the Generic Motion Silhouette Image (GMSI) is proposed for gait recognition. The GMSI is a gray-level image and involves the spatiotemporal information of individual motion. The GMSI not only generalizes the MSI but also reflects a flexible feature of a gait sequence. Along with the GMSI, we use the Principal Component Analysis(PCA) to reduce the dimensionality of the GMSI and the Nearest Neighbor(NN) for classification. We apply the proposed feature to NLPR database and compare it with the conventional MSI. Experimental results show the effectiveness of the GMSI.

A Position based Kinematic Method for the Analysis of Human Gait

  • Choi Ahn Ryul;Rim Yong Hoon;Kim Youn Soo;Mun Joung Hwan
    • Journal of Mechanical Science and Technology
    • /
    • 제19권10호
    • /
    • pp.1919-1931
    • /
    • 2005
  • Human joint motion can be kinematically described in three planes, typically the frontal, sagittal, and transverse, and related to experimentally measured data. The selection of reference systems is a prerequisite for accurate kinematic analysis and resulting development of the equations of motion. Moreover, the development of analysis techniques for the minimization of errors, due to skin movement or body deformation, during experiments involving human locomotion is a critically important step, without which accurate results in this type of experiment are an impossibility. The traditional kinematic analysis method is the Angular-based method (ABM), which utilizes the Euler angle or the Bryant angle. However, this analysis method tends to increase cumulative errors due to skin movement. Therefore, the objective of this study was to propose a new kinematic analysis method, Position-based method (PBM), which directly applies position displacement data to represent locomotion. The PBM presented here was designed to minimize cumulative errors via considerations of angle changes and translational motion between markers occurring due to skin movements. In order to verify the efficacy and accuracy of the developed PBM, the mean value of joint dislocation at the knee during one gait cycle and the pattern of three dimensional translation motion of the tibiofemoral joint at the knee, in both flexion and extension, were accessed via ABM and via new method, PBM, with a Local Reference system (LRS) and Segmental Reference system (SRS), and then the data were compared between the two techniques. Our results indicate that the proposed PBM resulted in improved accuracy in terms of motion analysis, as compared to ABM, with the LRS and SRS.

보행 재활 로봇을 위한 2자유도 족관절 기구 개발 (Development of a 2-DOF Ankle Mechanism for Gait Rehabilitation Robots)

  • 허근섭;강오현;이상룡;이춘영
    • 제어로봇시스템학회논문지
    • /
    • 제21권6호
    • /
    • pp.503-509
    • /
    • 2015
  • In this paper, we designed and tested an ankle joint mechanism for a gait rehabilitation robot. Gait rehabilitation programs are designed to improve the natural leg motion of patients who have lost their walking capabilities by accident or disease. Strengthening the muscles of the lower-limbs and stimulation of the nervous system corresponding to walking helps patients to walk again using gait assistive devices. It is an obvious requirement that the rehabilitation system's motion should be similar to and as natural as the normal gait. However, the system being used for gait rehabilitation does not pay much attention to ankle joints, which play an important role in correct walking as the motion of the ankle should reflect the movement of the center of gravity (COG) of the body. Consequently, we have designed an ankle mechanism that ensures the safety of the patient as well as efficient gait training. Also, even patients with low leg muscle strength are able to operate the ankle joint due to the direct-drive mechanism without a reducer. This safety feature prevents any possible adverse load on the human ankle. The additional degree of freedom for the roll motion achieves a gait pattern which is similar to the normal gait and with a greater degree of comfort.

운동관절 데이터베이스를 이용한 3차원 인체모형의 동작제어 (Motion Control of 3D Human Character Using Motion Database)

  • 김시중;국태용
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 1998년도 춘계학술발표논문집
    • /
    • pp.262-267
    • /
    • 1998
  • A hierarchical motion control system for animation of 3D human character is implemented using the motion database in realtime. The proposed motion control system consists of coordination controller for gait timing and balancing of walking motion, joint servo controller for realistic limb movement, and motion database for goal-directed character animation which makes time-consuming animation relatively easy task. As one example among the various applications of the proposed motion control system. We present a simple virtual reality system in which the motion control system plays a central role in generating realistic motion of virtual human character.

  • PDF

이족보행로봇(IWR-III)의 지속적인 몸체 추진을 위한 걸음새 구현 (Gait Implementation of Biped Walking Robot(IWR-III) for continuous trunk motion)

  • 장충렬;최영하;최상호;김진걸
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 B
    • /
    • pp.549-551
    • /
    • 1998
  • This paper deals with the new gait implementation of biped walking robot(IWR-III). In the case of using old gait. The trunk should be stopped during the phase changing time. But using new gait, the trunk moves continuously for all walking time. As a result, IWR-III has a walking gait similar to human being, and the motion of balancing joints can be reduced by the trunk ahead effect in the double support phase, moreover, ZMP tracking is improved, therefore the stability of IWR-III is improved. The trajectory is planned with a 5th order spline interpolation and stability of IWR-III is certified with a biped simulator.

  • PDF

A Method for the Reduction of Skin Marker Artifacts During Walking : Application to the Knee

  • Mun, Joung-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • 제17권6호
    • /
    • pp.825-835
    • /
    • 2003
  • Previous studies have demonstrated the importance of joint angle errors mainly due to skin artifact and measurement errors during gait analysis. Joint angle errors lead to unreliable kinematics and kinetic analyses in the investigation of human motion. The purpose of this paper is to present the Joint Averaging Coordinate System (JACS) method for human gait analysis. The JACS method is based on the concept of statistical data reduction of anatomically referenced marker data. Since markers are not attached to rigid bodies, different marker combinations lead to slightly different predictions of joint angles. These different combinations can be averaged in order to provide a "best" estimate of joint angle. Results of a gait analysis are presented using clinically meaningful terminology to provide better communication with clinical personal. In order to verify the developed JACS method, a simple three-dimensional knee joint contact model was developed, employing an absolute coordinate system without using any kinematics constraint in which thigh and shank segments can be derived independently. In the experimental data recovery, the separation and penetration distance of the knee joint is supposed to be zero during one gait cycle if there are no errors in the experimental data. Using the JACS method, the separation and penetration error was reduced compared to well-developed existing methods such as ACRS and Spoor & Veldpaus method. The separation and penetration distance ranged up to 15 mm and 12 mm using the Spoor & Veldpaus and ACRS method, respectively, compared to 9 mm using JACS method. Statistical methods like the JACS can be applied in conjunction with existing techniques that reduce systematic errors in marker location, leading to an improved assessment of human gait.

기능기반 형상변형기술을 응용한 환자맞춤형 근골격 모델의 보행패턴 예측에 관한 연구 (Musculoskeletal Models to Predict Patient-specific Gait Patterns Using Function-based Morphing Technique)

  • 박병건;구본열;박은주;체재욱;이순혁;김재정
    • 한국CDE학회논문집
    • /
    • 제17권6호
    • /
    • pp.443-455
    • /
    • 2012
  • The configuration of a musculoskeletal (MS) system is closely related to the individual motions of the human body. Many researches have been focused on evaluating the associations between the MS configuration and the individual motion using patient-specific MS models, but it still remains a challenging issue to accurately predict the motion by differed configurations of the MS system. The main objective of this paper is to predict the changes of a patient-specific gait by altering the geometric parameters of the hip joint using function-based morphing method (FBM). FBM is suitable for motion analysis since this method provide a robust way to morph a MS model while preserving the biomechanical functions of the bones. Computed-muscle control technique is used to calculate the muscle excitations to reproduce the targeted motion within a digital MS model without the motion-captured data. We applied this approach to a patient who has an abnormal gait pattern. Results showed that the femoral neck length and the angle significantly affect to the motion especially for the hip abduction angle during gait, and that this approach is suitable for gait prediction.

Three-Dimensional Kinematic Model of the Human Knee Joint during Gait

  • Mun, Joung-Hwan;Seichi Takeuchi
    • 대한의용생체공학회:의공학회지
    • /
    • 제23권3호
    • /
    • pp.171-179
    • /
    • 2002
  • 운동 중에 있는 인체 무릎관절의 기능을 이해하기 위한 기구학적(Kinematic) 분석 과 동역학적(Kinetic) 분석을 행하는데 있어서 관절 표면의 기하학이 주요한 역할을 한다는 것은 잘 알려져 있다. 슬관절은 미끄러짐 (sliding)과 구름 (rolling) 운동을 고려하지 않고는 정확하게 모델 될 수 없다 본 연구에서는 미끄러짐 과 회전 운동 그리고 주요 인대 (ligament)를 고려한 3타원 인체 슬관절 모델을 제시한다 본 연구는. 슬관절의 전형적인측 평면 CT 영상의 확장으로부터 얻어진 두개의 캠 측면도를 이용하여 보다 실제에 가까운 관절의 기하학을 이용한 모델을 제시한다 개발된 모델은 보행 중 인체 슬관절을 통한 힘의 전달경로를 예측하는데 있어서 실험을 기초로 한 이전의 결과보고와 비교하여 볼 때 매우 잘 일치한다 대퇴골와 경골 사이의 접촉 점은 무릎의 굽힘이 진행되는 동안 전방에서 후방으로 이동하는데 이것은 무릎의 굽힘과 폄의 운동에 대한 전방/후방 운동의 커플링을 반영한 것이다. 본 연구에서 개발된 모델에 의하면 일회의 보행 사이클동안 경골 표면에 접촉 점의 전방/후방 이동변위는 바깥쪽 관절구 쪽이 약 16 mm 이고. 안쪽 관절구 쪽이 약 25 mm 이다 또한, 일회의 보행 사이클 동안 대퇴골 의 이동변위는 바깥쪽이 약 7 mm 그리고 안쪽이 약 10 mm 이다. 개발된 모델은, 관절의 퇴화를 진단 하는데 이용할 수 있는 가능성이 기대된다

Secured Authentication through Integration of Gait and Footprint for Human Identification

  • Murukesh, C.;Thanushkodi, K.;Padmanabhan, Preethi;Feroze, Naina Mohamed D.
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권6호
    • /
    • pp.2118-2125
    • /
    • 2014
  • Gait Recognition is a new technique to identify the people by the way they walk. Human gait is a spatio-temporal phenomenon that typifies the motion characteristics of an individual. The proposed method makes a simple but efficient attempt to gait recognition. For each video file, spatial silhouettes of a walker are extracted by an improved background subtraction procedure using Gaussian Mixture Model (GMM). Here GMM is used as a parametric probability density function represented as a weighted sum of Gaussian component densities. Then, the relevant features are extracted from the silhouette tracked from the given video file using the Principal Component Analysis (PCA) method. The Fisher Linear Discriminant Analysis (FLDA) classifier is used in the classification of dimensional reduced image derived by the PCA method for gait recognition. Although gait images can be easily acquired, the gait recognition is affected by clothes, shoes, carrying status and specific physical condition of an individual. To overcome this problem, it is combined with footprint as a multimodal biometric system. The minutiae is extracted from the footprint and then fused with silhouette image using the Discrete Stationary Wavelet Transform (DSWT). The experimental result shows that the efficiency of proposed fusion algorithm works well and attains better result while comparing with other fusion schemes.